
  

 
 

Abstract— Motor units (MUs) are the basic unit of motor 
control. MU synchronization has been evaluated to identify 
common inputs in neural circuitry during motor coordination. 
Recent studies have compared common inputs between muscles 
in the lower limb, but further investigation is needed to 
compare common inputs to MUs both within a muscle and 
between MUs of different muscle pairs. The goal of this 
preliminary study was to characterize levels of common inputs 
to MUs in three muscle groups: MUs within a muscle, between 
bilateral homologous pairs, and between agonist/antagonist 
muscle pairs. To achieve this, surface electromyography (EMG) 
was recorded during bilateral ankle dorsiflexion and 
plantarflexion on the right and left tibiales anterior (RTA, 
LTA) and gastrocnemii (RGA, LGA) muscles. After 
decomposing EMG into active MU firings, we conducted 
coherence analyses of composite MU spike trains (CSTs) in 
each muscle group in both the beta (13-30 Hz) and gamma (30-
60 Hz) frequency bands. Our results indicate MUs within a 
muscle have the greatest levels of common input, with 
decreasing levels of common input to bilateral and 
agonist/antagonist muscle pairs, respectively. Additionally, 
each muscle group exhibited similar levels of common input 
between the beta and gamma bands. This work may provide a 
way to unveil mechanisms of functional coordination in the 
lower limb across motor tasks. 

I. INTRODUCTION 

A motor unit (MU), defined as a single motor neuron and 
all the muscle fibers that it innervates, is considered the most 
fundamental component of voluntary muscle activation [1]. 
Historically, investigations of synchronization between MUs 
have been employed to examine functional organizations of 
neural connectivity in mechanisms for motor control. Cross-
correlation analyses in the time domain illuminate short-term 
synchronization [2], while coherence analyses in the 
frequency domain allow study of common rhythmic inputs 
[3]. This technique has led to suggestions that distinct 
frequency bands may correspond to certain aspects of the 
motor control [4]. 

Surface electromyography (EMG), a summation of MU 
action potentials, provides a measure of global muscle 
activation, and has often been analyzed to estimate the 
synchronization of MUs in different muscle pairs [5]. 
However, such analyses are sensitive to electrode location 
[6] and spectral properties of MU action potentials [7], and 
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do not allow examination of common input to MUs within 
an EMG signal. Recently, blind-source separation 
techniques decomposing surface EMG into individual MUs 
resembling the population of active MUs in a muscle have 
been developed [8], [9]. With noninvasive access to MU 
firing events, recent studies have compared common inputs 
to MUs within a muscle  [10] and removed effects of EMG 
preprocessing on coherence analyses. 

In the lower limb, studies on intermuscular coherence at 
the EMG level between bilateral and antagonistic muscle 
pairs have hypothesized functional networks that organize 
muscle synergies [11]. At the MU level, one study found a 
portion of common drive between MUs within a muscle is 
shared with MUs between muscles [12]. However, this study 
was limited to unilateral agonistic muscles, with more 
examination needed comparing common inputs to MUs 
within a muscle versus common inputs across both bilateral 
and agonist/antagonist muscle pairs. Accordingly, this study 
sought to characterize the magnitude of common input to 
MUs within and between the right and left tibiales anterior 
(RTA, LTA) and medial gastrocnemii (RGA, LGA) muscles 
during bilateral ankle dorsiflexion and plantarflexion. This 
effort may further clarify neural connectivity related to motor 
control of lower limb muscles. 

II. METHODS 

A. Participants 
Two able-bodied individuals (both male, aged 25) 

participated in this study after providing written informed 
consent. The experimental protocol was approved by the 
University of North Carolina at Chapel Hill’s Institutional 
Review Board. 

B. Experimental Setup 
To obtain EMG signals, 4-pin array electrodes were 

placed on the RTA, LTA, RGA, and LGA muscles. Isopropyl 
alcohol swabs on the skin were used to reduce impedance 
prior to sensor placement with a double-sided adhesive. 
Further, medical tape and Coban were used to apply uniform 
pressure (Fig. 1). To ensure reasonable signal-to-noise ratios 
on all channels, EMG were visually inspected both at rest and 
at mid-level isometric muscle activations, and electrodes 
were adjusted if necessary. Thereafter, 20 reflective markers 
were placed on both legs to acquire kinematic data of the 
ankle (Vicon, 100 Hz). 

C. Experimental Procedure 
Subjects conducted 6 trials, each with 5 seconds of initial 

rest, followed by 1 minute of oscillating ankle motion 
between maximum dorsiflexion and plantarflexion (0.33 Hz 
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in-phase bilaterally). This rate was chosen to ensure motor 
unit action potential (MUAP) shape changes could be 
captured during decomposition [13]; auditory feedback with 
a metronome cued subjects to maintain a steady motion. A 
minimum of two minutes of rest were provided in between 
each trial to prevent fatigue. 

D. Data Processing & Coherence Analysis 
Prior to MU decomposition, kinematic data of the ankle 

was calculated with Vicon’s Lower-Limb Plug-in Gait (PiG; 
Vicon Motion Systems, Oxford, UK) to verify reasonable 
EMG activity during the task. To extract MU firings, surface 
EMG was decomposed via Neuromap software [13], [14]. 
Early versions of the algorithm have been independently 
validated with two sources [15], simulation [16] and spike-
triggered averaging [17]. 

To compare common inputs to MUs within and across 
muscles, coherence analyses were conducted between three 
muscle groups defined as intramuscular, bilateral, and 
agonist/antagonistic. For each respective group, MUs from 
the identical muscle, homologous muscle pairs across legs, 
and agonist/antagonistic muscle pairs within each leg were 
selected to create two composite spike trains (CSTs), i.e., 
summations of MU spike trains. The two CSTs served as 
inputs x and y into the coherence function (1). The number 
of MUs we used to create a CST remained fixed because the 
magnitude of coherence increases as more MUs are used 
[18]. To account for instances with fewer MUs decomposed, 
each CST contained 4 randomly selected MUs. For each 
comparison in a muscle group, CSTs were generated 100 
times per trial, and the coherence output was averaged 
across all iterations [19]. 

The coherence between two signals x and y is the ratio of 
their respective cross-spectral and auto-spectral densities (1) 
and gives a measure of correlation as a function of frequency 
ranging from 0 to 1. The coherence between CSTs was 
estimated with Welch’s periodogram method via a 0.5-s 
Hanning window with 75% overlap [20]. 

  (1) 

The confidence level of the coherence across all 
frequencies is determined as (2): 

  (2) 

where n is the number of window segments and α (0.05) is 
the probability of rejecting a true null hypothesis (Cxy(f) = 0) 
[21]. Coherence values were then normalized and unbounded 
via Fisher’s Z-transformation [21]: 

  (3)  

 

 

 
Figure 1. Experimental setup. Four 4-pin array electrodes were placed 
on the left and right tibiales anterior and medial gastrocnemii muscles. 
Reflective markers enabled capture of kinematic data of the ankle. 

 
Figure 2. Representative cycles of bilateral ankle motion by subject 2. 
(A) Ankle angle of each leg, with dorsiflexion positive, and the left and 
right legs as blue and red dashed lines, respectively. EMG from one 
channel and corresponding MU spike trains from the (B) right tibialis 
anterior, (C) right gastrocnemius, (D) left tibialis anterior, and (E) left 
gastrocnemius. 
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To compare between muscle groups and frequency bands, 
after computing the average Z-coherence across all iterations 
within a muscle group, we calculated the mean band Z-
coherence (MBZC) within the beta (13-30 Hz) and gamma 
(30-60 Hz) bands (4): 

  (4) 

where flow and fhigh are the lower and upper bounds of the 
frequency band, respectively. 

III. RESULTS 

The RTA, LTA, RGA, and LGA muscles yielded 21.58 
±3.72, ±20.08 ±2.18, 23.45 ±2.47, and 13.25 ±1.68 MUs 
respectively in each trial. Excluding four instances yielding 
<8 MUs (1 RTA, 1 LTA, and 2 LGA, all in different trials), 
44 intramuscular and 20 bilateral or agonist/antagonistic 
muscle comparisons were made across trials. 

Fig. 2 illustrates the ankle angle for each leg during 
representative cycles of motion and corresponding EMG 
activity from each muscle. The peak firing rates of MUs from 
the TA of both legs within each cycle varied between 8-20 
Hz, coinciding with those observed in the same muscle after 
decomposition during walking [13]. In this case, the LGA 

and RGA had lower firing rates and fewer MUs, consistent 
with their lower EMG amplitudes relative to the TA.  

Fig. 3 displays the Z-coherence for each comparison 
within a muscle group across both subjects. Within each 
muscle group, the compared muscles exhibited similar 
behavior. For all intramuscular comparisons, the Z-coherence 
increased across the beta band and decreased across the 
gamma band. In the bilateral muscle group, the Z-coherence 
in both the TAs and GAs varied, with higher levels in of 
coherence in the upper portion of each frequency band. Z-
coherence in agonist/antagonistic muscle pairs maintained 
steady levels across both the beta and gamma bands. 

To summarize the level of common input across muscle 
groups in each frequency band, Fig. 4 displays their 
respective MBZC. The beta and gamma bands had similar 
values in each muscle group. The intramuscular muscle 
group had significant MBZC, and noticeably greater levels 
compared to the bilateral and agonist/antagonist muscle 
groups. The bilateral muscle group displayed MBZC slightly 
above the confidence level, while agonist/antagonist muscle 
pairs exhibited low levels of MBZC. 

IV. DISCUSSION 

This preliminary study sought to directly compare the 
degree of common inputs to MUs in the lower limb within a 
muscle relative to bilateral homologous and 
agonist/antagonistic muscle pairs in the beta (13-30 Hz) and 
gamma (30-60 Hz) bands. The results suggest MUs from an 
identical muscle distinctly share the greatest amount of 
common neural drive. This aligns with hypotheses on 
mechanisms for motor control suggesting more common 
inputs may reduce complexity of the control signal [4]. To 
minimize complexity, individual muscles may have more 
common inputs relative to inputs across multiple muscles 
which coordinate as a network to achieve complex tasks. 

Across muscle groups, the beta and gamma frequency 
bands exhibited similar levels of coherence (Fig. 3-4). Prior 
work in corticomuscular coherence observed greatest 
coherence in the beta band in isometric activity, suggesting 
common inputs in this band are derived from the motor 
cortex [3]. However, further studies saw increased gamma 

 

 
Figure 3. Z-Coherence of (A) intramuscular, (B) bilateral, and (C) 
agonist/antagonist muscle groups across subjects. Shaded borders 
indicate the mean ±SE at each frequency across all iterations. Vertical 
dashed lines divide the beta and gamma bands. Horizontal dotted lines 
display the confidence level for significant coherence. 

 
Figure 4. Mean band Z-coherence across muscle groups (mean ±SE). 
The horizontal dotted line displays the confidence level for significant 
coherence. 
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band corticomuscular coherence in isotonic contractions [22] 
and reduced levels in deafferented patients [23], suggesting 
afferent feedback of muscle dynamics may contribute to 
these rhythmic inputs. Based on these studies and our 
results, common input from afferents may be sent to both 
MUs within a muscle and MUs between bilateral 
homologous pairs to effectively coordinate both ankles 
during the motor task. Given bilateral coherence was close 
to the confidence level, future protocols with more subjects 
in both static and dynamic conditions will further assess the 
degree of this potential effect. 

Notably, agonist/antagonist muscle pairs did not display 
significant coherence during this task. One study showed 
significant coherence between the TA and GA in the beta 
and gamma bands during bipedal quiet standing [11], while 
two more recent studies only showed significant coherence 
less than 5 Hz in both bipedal and unipedal quiet standing 
[24], [25], suggesting common inputs to antagonistic 
muscles arise from subcortical origins with preference 
towards independent anterior and posterior synergies. In our 
study, it is possible little coordination of agonist/antagonist 
muscle pairs was needed because our task was constrained to 
sitting with in-phase bilateral ankle motion. Further study of 
common inputs to these muscle groups in differing motor 
control patterns will examine potential task dependencies. 

Limitations of this study include the number of subjects 
and analysis at higher frequencies in only one motor task. In 
future studies, we plan to recruit more subjects 
representative of the population, analyze related lower 
frequency bands, and compare muscle groups within 
movement cycles across a variety of motor tasks. 
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