
  

  

Abstract— Remote patient monitoring systems show promise 
for assisting stroke patients in home exercise programs.  While 
these systems typically measure exercise repetitions in order to 
monitor compliance, a key goal of therapists is to also monitor 
movement quality. Here we develop a measure of movement 
quality – Peak Intensity – that is a measure of movement 
smoothness that is implementable with a wrist-worn inertial 
measurement unit (IMU) in the context of performing 
repetitions of an upper extremity exercise. To calculate Peak 
Intensity, we assume we have an accurate count of the number 
of exercise repetitions in an exercise set, then calculate Peak 
Intensity as the total number of movement peaks from the 
continuous stream of IMU data generated across the set, divided 
by the number of repetitions. Using wrist-worn IMU 
measurements from 19 participants with chronic stroke 
performing a sample exercise in which they picked up and 
moved blocks across a divider (i.e. the Box and Blocks Test) we 
show that Peak Intensity is moderately correlated with a widely 
used measure of movement quality, the Quality of Movement 
score of the Motor Activity Log.  Peak Intensity is also strongly 
correlated with a measure of hand function (the BBT score 
itself), but is more sensitive at greater levels of impairment.  
Finally, we show Peak Intensity can be validly derived from 
either wrist acceleration or angular velocity.  These results 
suggest Peak Intensity could serve as an indicator of movement 
exercise quality for therapists monitoring home rehabilitation, 
and, potentially, as a means to provide augmented feedback to 
patients about their exercise quality. 

I. INTRODUCTION 

The pandemic has amplified the growing interest in 
improving home exercise programs for individuals who have 
experienced a stroke.  In the US, new billing codes have been 
introduced that can be applied to reimburse for home exercise 
programs that are being remotely monitored. To improve 
home exercise program technology, we have been working to 
develop a system that combines an app-based activity 
management system with sensor-based measurement of limb 
movement.  The idea is that the therapy app can be used to 
prescribe exercises, with the therapist specifying desired 
number of exercise sets and number of repetitions per set, and 
then the sensor can be used to count repetitions actually 
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achieved. However, in discussions with therapists, they noted 
that they desire to not only have information about the amount 
of movement completed at home, but also movement quality. 

Development of sensor-based, home exercise technology is 
also justified by the finding that incorporation of augmented 
feedback can foster upper extremity recovery after stroke [1]–
[3]. Moreover, in augmented feedback research, it has been 
shown that providing information about movement quality (a 
form of Knowledge of Performance), can be more effective 
than providing information about movement completion (a 
form of Knowledge of Results) [4]. This finding is consistent 
with therapists’ desires to provide augmented feedback about 
movement quality. 

A key question, then, is: what aspects of movement quality 
should be quantified and presented to patients and remotely 
monitored by therapists during home exercise programs? 
Based on interviews with therapists, we suggest there are four 
main items of interest: range of motion, speed of motion, 
smoothness of motion, and the degree of compensatory or 
incorrect movement patterns. The focus of this work is to 
develop a measure of movement smoothness that is 
implementable with a wrist-worn inertial measurement unit 
(IMU) in the context of performing repetitions of an upper 
extremity exercise. 

  Movement smoothness characterizes skilled human motor 
ability. Human movements typically become saccadic in 
neurological injuries and diseases, including after stroke, 
appearing to be comprised of many sub-movements [5], [6]. 
One of the hypotheses for such discontinuities is the loss of 
coordinated muscle co-contraction [7], [8]. The amelioration 
of patients’ movement smoothness after neurological injuries 
has been proposed as a major target in movement 
rehabilitation [9]. 

To assess how fluently subjects can move their limbs and 
evaluate the progression of recovery, a wide variety of 
smoothness metrics have been developed and used for 
assessment, with much of the work coming in the context of 
upper extremity recovery after stroke [10]. Smoothness   
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metrics analyze mathematical characteristics of the movement 
profile, such as the number of peaks in the velocity profile of 
movement, the magnitude of jerk, or the broadness of the 
frequency profile [11], [12]. In stroke rehabilitation, such 
smoothness metrics have been shown to be strongly correlated 
with standardized clinical assessments of upper extremity 
movement impairment, such as the Fugl-Meyer Upper 
Extremity Assessment [13]. Smoothness metrics thus are a 
potential marker for analyzing how one recovers motor 
dexterity after neurological diseases [11], [12], [14].  
Smoothness metrics derived from wearable sensors worn 
throughout the day by stroke patients have also been proposed 
to reflect movement quality, independently of functional status 
of the limb, based on principle components analysis of 
combined clinical and smoothness metrics [9]. 

Although smoothness metrics have been used to evaluate 
how fluently one moves [11] or to see how one develops motor 
control [8], to our knowledge, no study has attempted to 
provide feedback from a wearable sensor to people using 
smoothness as the indicator of movement quality. Here, we 
present first work toward developing a method for measuring 
smoothness during performance of home exercises while 
wearing an IMU on the wrist. Our ultimate goal is to provide 
smoothness feedback as both a reinforcer of recovery and a 
guide to therapists monitoring home rehabilitation exercises. 

II. METHODS 

A. Peak Intensity Metric 
Melendez et al. proposed a series of guidelines for deriving 

smoothness metrics from the sensor readings obtained from an 
IMU [16]. However, in the context of continuous 
measurement of unsupervised, repetitive movement, it is 
difficult to directly apply existing metrics. This is because 
these metrics have been developed for well-defined, 
discretely-attempted movements, such as targeted reaches, 
with data typically acquired in a controlled laboratory setting. 
Thus, the problem of developing smoothness metrics for 
home-based wearables can be seen as having two 
subproblems: identifying discretely attempted movements and 
then calculating smoothness for each movement. 

Generalized movement segmentation remains an 
outstanding challenge. There have been many algorithms 
proposed for segmenting movements from continuous streams 
of data [17], but the robustness of these algorithms to a wide 
variety of movement types and levels of impairment remains 
questionable [18]. Here, we propose a potential solution 
applicable in the context of performing home rehabilitation 
exercises in prescribed “sets” and “reps”: measure smoothness 
across the entire exercise set, then divide the aggregate 
smoothness by the number of reps, producing a “smoothness 
per rep”. In this scenario, we assume an accurate rep count, 
whether it is from a sensor system designed to count specific 
exercises or a patient report (i.e. when an exercise prescription 
system asks a patient to do “10 reps”, we assume they do 10 
reps). Further, such an approach requires that the smoothness 
metric be linear, in the sense that the sum of smoothness for 
individual exercise repetitions equals the total smoothness 
across the entire set of repetitions. 

In considering potential smoothness measures, we observed 
that prominent measures, such as SPARC and Log 

Dimensionless Jerk [12], do not satisfy this linearity property.  
However, another popular measure does: the number of peaks.  
This is because the sum of the number of peaks for individual 
repetitions is, indeed, equal to the number of peaks across an 
entire set of repetitions. 

To find the peaks, we used the peak detection algorithm 
proposed by Brakel [19]. In this algorithm, peaks are defined 
as points further than a threshold from the moving mean 
calculated over a window of the data, and this threshold is 
defined as a multiple of the standard deviation of the data for 
the same window. Using a combination of the moving mean 
and the raw data, we can calculate the z-score for each data 
point, and define that point as a potential peak, as described 
here: 
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where �̅� represents the average of the data window N (set to 
100 for incorporating a single motion in a rep), 𝜎 represents 
the standard deviation of the window,  𝐼 (set to 0.1 for the 
remaining of the calculations) represents the influence of the 
new data to the previous 𝜇, 𝑧 represents the z-score, and 𝑦3 
corresponds to potential peaks where the calculated z-score is 
larger than the threshold 𝑧)*. We then select a single peak for 
regions where there are multiple potential peaks in sequence. 
Finally, we enforce that all peaks are at least 0.5 seconds apart 
from another peak, removing those at smaller intervals. With 
the peaks defined, we can calculate the Peak Metric 𝑃𝑀+ by 
counting the number of peaks in one exercise set. Then, we 
normalize this metric by the number of movement repetitions, 
based on the premise we evaluate movement smoothness at the 
end of movement execution. We call this metric the Peak 
Intensity: 

 𝑃𝑒𝑎𝑘	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑃𝑀+

𝑁,
 (6) 

where 𝑁, represents the number of movement repetitions in 
one set of an exercise. Using this metric, we evaluate 
movement smoothness for targeted exercises in which one 
performs the same movement repeatedly. 

B. Human Subjects and Experimental Set-Up 

As an example of an upper limb exercise that mimics an 
exercise that might be included as part of a home exercise 
program, we asked 19 individuals with upper extremity 
impairment after a stroke to perform the Box and Blocks Test 
(BBT). All subjects provided informed consent and the 
experiment was approved by the UCI Institutional Review 
Board. For this test, they attempted to pick up as many small 
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blocks as they could in one minute, moving them across a 
divider and dropping them. They performed the BBT three 
times, with the first two measurements separated by 3 weeks, 
and the next two by three months. At each session they 
performed the test with both arms, which we will call the 
“impaired” and “unimpaired” arms. They wore an inertial 
measurement unit (the “Manumeter”) on each wrist, which 
recorded three axes of linear acceleration and three axes of 
rotational velocity at 52.6 Hz. Due to data loss in some BBT 
sessions, we obtained data for 34 impaired arm tests, and 37 
unimpaired arm tests. Further descriptions can be found in 
[20]. An experienced physical therapist supervised the BBT, 
and also administered the Motor Activity Log, a subjective 
self-ranking of how well (HW) and how much (the Amount 
of Use Scale – AS) the participants felt they used their upper 
extremity for various activities of daily living.  An MAL HW 
score can vary from 0 to 5, with a score of 1 corresponding to 
“The weaker arm was moved during that activity but was not 
helpful”; a score of 3 to “The weaker arm was used for the 
purpose indicated but movements were slow or were made 
with only some effort” and a score of 5 to “The ability to use 
the weaker arm for that activity was as good as before the 
stroke”. 

C. Data Pre-processing 
We preprocessed acceleration data using the Madgwick 

filter [21] to remove the gravity from sensor measurements: 
 -𝐚(𝑡) = -𝐚𝐫𝐚𝐰(𝑡) − -𝐠 (7) 
where araw is the raw acceleration in the sensor frame S, and 

a is acceleration used for analysis. g is the gravity subtracted 
from the raw acceleration using the filter. Then we low pass 
filtered both acceleration and angular velocity signals using a 
second-order Butterworth filter with a 5 Hz cutoff frequency. 
We computed the smoothness metric by applying it to the 
magnitude (i.e. L2-norm) of the three-axis acceleration or 
angular velocity signals, following the approach by Melendez 
[16]. 

III. RESULTS 

We calculated the Peak Intensity metric for 19 individuals 
with a stroke using data acquired from an IMU worn on the 
wrist at they performed a repetitive grasp-transport-release 
exercise – the BBT. Figure 1 shows the relationship between 
Peak Intensity and the BBT score, with Peak Intensity 
calculated using either linear acceleration and angular 
velocity readings obtained from the IMU. Peak Intensity 
obtained from either acceleration or velocity was strongly 
correlated to the BBT score, but was more sensitive to BBT 
Score at higher levels of impairment.  Increasing the z-score 
used in the peak detection algorithm shifted the best-fit curves 
to Peak Intensity-BBT relationship, but maintained their 
shape.    

Figure 2 shows the correlation between Peak Intensity and 
a measure of movement quality – the Motor Activity Log 
How Well Score (MAL-HW). Peak Intensity was 
significantly and moderately correlated with movement 
quality when Peak Intensity was derived using acceleration 
readings (r = 0.631, p < 0.01) or angular velocity readings (r 
= 0.584, p < 0.01). Peak Intensity was also correlated with 

MAL-AS score for both acceleration readings (r = 0.583, p < 
0.01) and angular velocity readings (r = 0.517, p < 0.05).  

 
Figure 1. The relationship between Peak Intensity and the BBT score. (A) 
Peak Intensity based on the acceleration measurements. (B) Peak Intensity 
based on the angular velocity measurements. The black dots and white dots 
represent data from impaired and unimpaired arm movement, respectively 
when the threshold for z-score used in the peak detection algorithm was equal 
to 2.0. The three lines in (A) and (B) show exponential curve fits to Peak 
Intensity vs BBT score, combining the impaired and unimpaired arm 
movement data. The solid lines represent Peak Intensity with z=1.0 threshold. 
The dashed lines represent Peak Intensity with z=2.0 threshold. The dotted 
lines Peak Intensity with z=3.0. 

 
Figure 2. The correlation between Peak Intensity and MAL. The threshold 
for z-score was 1.0, and the cutoff frequency for the Butterworth filter was 
5.0 Hz. The solid lines represent a linear fit of Peak Intensity taken from 
impaired subject data using the least squared method. The dashed line 
represents the confidence interval. The black dots represent peak metrics 
obtained from the impaired arms of subjects. The white dots represent Peak 
Intensity obtained from the unimpaired arms of subjects, plotted at the value 
of their MAL score for their impaired arm. (A) and (B): The correlation 
between Peak Intensity and MAL-HW obtained from acceleration and 
angular velocity, respectively. (C) and (D): The correlation between Peak 
Intensity and MAL-AS, obtained from acceleration and angular velocity, 
respectively. 

IV. DISCUSSION 

A key, unsolved goal in remote patient monitoring for 
home exercise programs after stroke is to quantify movement 
quality and not just movement quality.   Here, we found that 
a marker of movement smoothness – Peak Intensity – 
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correlated with stroke participant’s own assessment of their 
movement quality using an established clinical scale – the 
MAL-HW.  This suggests that Peak Intensity may be useful 
for providing movement quality feedback as both a reinforcer 
of recovery and a guide to therapists monitoring home 
rehabilitation. 

We proposed a method for calculating Peak Intensity that 
separates the problem of segmentation from that of 
smoothness quantification.  Specifically, we calculated the 
number of peaks across the continuous stream of IMU data 
generated across the exercise, then divided by the number of 
repetitions.  In this scenario, we assume an accurate rep count, 
whether it is from a sensor system designed specifically to 
count certain exercises or a patient report.  Clearly, the metric 
would become less accurate if the rep count is inaccurate.  
However, our working hypothesis is that rep counts that come 
from patient self-reports or sensor-based training systems 
designed to count specific exercises will be more accurate 
than generalized segmentation algorithms at present. 

Peak Intensity has several potential advantages compared 
to other smoothness metrics. It is insensitive to the amplitude 
and velocity of a movement trajectory. It is also intuitive to 
relate to. Having a higher Peak Intensity corresponds to 
making a greater number of submovements while attempting 
to do an exercise, and thus this number can be linked to 
physical events – i.e. the submovements. Finally, Peak 
Intensity can be derived from either wrist acceleration or 
angular velocity using a single wrist-worn sensor, as we 
showed. 

The peak detection algorithm we used has the advantage of 
having an explicit way to adjust its sensitivity by changing the 
z-score threshold, which may be useful in tuning the 
algorithm to sensors with different noise levels. 

 Previous work conducted in our lab examined the effect of 
providing wearable feedback to persons with stroke on the 
amount of finger and wrist movement they produced 
throughout the day [20]. We found that this form of feedback 
did not significantly increase the hand movements the 
participants made at home. There were also no significant 
differences in clinical outcomes between the experimental 
group and a control group that wore the sensor but did not 
receive feedback. One interpretation of these results is that it 
is not enough to simple provide feedback on movement 
counts to promote recovery. Rather, it is necessary to provide 
a plan for exercise (i.e. a home exercise program) as well as 
feedback on movement quality. Indeed, this is the established 
paradigm in home rehabilitation that therapists currently 
promote, although they have no way to provide feedback on 
movement quality between visits. In our future work, we plan 
to test whether providing a dedicated home exercise program, 
with feedback about movement quality provided by a 
wearable sensor, can improve upper extremity stroke 
recovery. 

REFERENCES 
[1] P. van Vliet and G. Wulf, “Extrinsic feedback for motor learning after 

stroke: What is the evidence?,” Disability and Rehabilitation, vol. 28, 
no. 13–14. Disabil Rehabil, pp. 831–840, Jul. 2006. 

[2] R. Badami, M. Vaezmousavi, G. Wulf, and M. Namazizadeh, 
“Research Quarterly for Exercise and Sport Feedback After Good 
Versus Poor Trials Affects Intrinsic Motivation,” 2013. 

[3] S. Chiviacowsky, G. Wulf, R. Wally, and T. Borges, “Research 
Quarterly for Exercise and Sport Knowledge of Results After Good 
Trials Enhances Learning in Older Adults,” 2013. 

[4] Sharma DA, Chevidikunnan MF, Khan FR, and Gaowgzeh RA, 
“Effectiveness of knowledge of result and knowledge of performance 
in the learning of a skilled motor activity by healthy young adults,” J 
Phys Ther Sci., 2016. 

[5] C. A. Trombly, “Observations of improvement of reaching in five 
subjects with left hemiparesis,” Journal of Neurology Neurosurgery 
and Psychiatry, vol. 56, no. 1, pp. 40–45, 1993 

[6] L. E. Kahn, M. L. Zygman, W. Z. Rymer, and D. J. Reinkensmeyer, 
“Effect of robot-assisted and unassisted exercise on functional 
reaching in chronic hemiparesis,” Annual International Conference of 
the IEEE Engineering in Medicine and Biology - Proceedings, vol. 2, 
pp. 1344–1347, 2001. 

[7] A. M. Krylow and W. Zev Rymer, “Role of intrinsic muscle properties 
in producing smooth movements,” IEEE Transactions on Biomedical 
Engineering, vol. 44, no. 2, pp. 165–176, 1997. 

[8] Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, and 
Stein J, Hogan N. “Movement smoothness changes during stroke 
recovery,” J Neurosci, 2002. 

[9] D. S. de Lucena, O. Stoller, J. B. Rowe, V. Chan, and D. J. 
Reinkensmeyer, “Wearable sensing for rehabilitation after stroke: 
Bimanual jerk asymmetry encodes unique information about the 
variability of upper extremity recovery,” in IEEE International 
Conference on Rehabilitation Robotics, Aug. 2017, pp. 1603–1608. 

[10] T. Platz, P. Denzler, B. Kaden, and K. H. Mauritz, “Motor learning 
after recovery from hemiparesis,” Neuropsychologia, vol. 32, no. 10, 
pp. 1209–1223, Oct. 1994. 

[11] N. Hogan and D. Sternad, “Sensitivity of smoothness measures to 
movement duration, amplitude, and arrests,” Journal of Motor 
Behavior, vol. 41, no. 6, pp. 529–534, 2009. 

[12] S. Balasubramanian, A. Melendez-Calderon, and E. Burdet, “A robust 
and sensitive metric for quantifying movement smoothness,” IEEE 
Transactions on Biomedical Engineering, vol. 59, no. 8, pp. 2126–
2136, 2012. 

[13] S. Balasubramanian, R. Colombo, I. Sterpi, V. Sanguineti, and E. 
Burdet, “Robotic assessment of upper limb motor function after 
stroke,” American Journal of Physical Medicine and Rehabilitation, 
vol. 91, no. 11 SUPPL.3. 2012. 

[14] A. Rihar, M. Mihelj, J. Pašič, J. Kolar, and M. Munih, “Infant trunk 
posture and arm movement assessment using pressure mattress, 
inertial and magnetic measurement units (IMUs),” Journal of 
NeuroEngineering and Rehabilitation, vol. 11, no. 1, p. 133, Sep. 
2014. 

[15] Figueiredo AI, Balbinot G, Brauner FO, Schiavo A, Baptista RR, 
Pagnussat AS, Hollands K, Mestriner RG. SPARC Metrics Provide 
Mobility Smoothness Assessment in Oldest-Old With and Without a 
History of Falls: A Case Control Study. Front Physiol. 2020. 

[16] A. Melendez-Calderon, C. Shirota, and S. Balasubramanian, 
“Estimating Movement Smoothness From Inertial Measurement 
Units,” Frontiers in Bioengineering and Biotechnology, vol. 8, p. 
558771, Jan. 2021. 

[17] J. Kohlmorgen and S. Lemm, “A Dynamic HMM for On-line 
Segmentation of Sequential Data,” Advances in Neural Information 
Processing System 14, p793-800, 2001. 

[18] J. F. S. Lin and D. Kulic, “Online segmentation of human motion for 
automated rehabilitation exercise analysis,” IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp. 
168–180, Jan. 2014. 

[19] J. P. G. van Brakel, “Robust peak detection algorithm using z-scores,” 
Stack Overflow. https://stackoverflow.com/questions/22583391/peak-
signal-detection-in-realtime-timeseries-data/22640362#22640362. 

[20] D. S. de Lucena, “New Technologies for On-Demand Hand 
Rehabilitation in the Living Environment after Neurologic Injury,” UC 
Irvine, Irvine, CA, 2019. 

[21] S. O. H. Madgwick, “An efficient orientation filter for inertial and 
inertial/magnetic sensor arrays,” 2010.  

 

6694


