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Abstract— Functional connectivity (FC) mapping from
resting-state functional magnetic resonance imaging (rsfMRI)
data is a widely used technique to characterize the brain
abnormalities in mental health disorders. Using atlases for brain
parcellation is an important intermediate step in calculation of
FC maps. Atlases with varying resolution (number of nodes
in an atlas) have been deployed by researchers to study the
abnormal brain functions in Schizophrenia. In this work,
we compared the variations in FC maps of Schizophrenic
brains obtained from three different atlases: AAL atlas (2002),
Dosenbach atlas (2010), and the Brainnetome atlas (2016). To
evaluate the atlas-dependent variations in FC maps, we relied
on the capability of the features of FC maps in accurately
classifying a given data into healthy or Schizophrenia group.
Our results indicate that the high-resolution Dosenbach and
Brainnetome atlases perform better than AAL atlas in terms
of the accuracy, sensitivity and specificity of the SVM classifier.

I. INTRODUCTION

Schizophrenia is a mental health disorder where people do
not interpret reality in a normal way. The common classical
descriptors of its symptoms include hallucinations, delusions,
disorganized speech or behaviour, reduced participation in
daily activities and social isolation. Multiple neuroimaging
techniques have been developed over the past two decades
to reveal the cognitive impairments associated with these
symptoms. A popular technique among them is the resting
state functional magnetic resonance imaging (rsfMRI) which
creates the functional connectivity (FC) maps of the brain.
Researchers working in FC mapping have applied graph
theory techniques to reveal multiple functional sub-networks
of the brain, each specific to a certain brain function.

Unlike task-based fMRI, the participants undergoing
rsfMRI are not presented with any stimulus (or task). Instead,
they are asked to lie down inside MRI scanner with their
eyes open or close and think of nothing in particular. The
ease of performing rsfMRI has made it a popular choice over
the task-based fMRI for Schizophrenic people who may not
be able to satisfactorily perform the complex cognitive tasks
required in task-based fMRI [1].

There are in general two widely used methods for gen-
eration of FC maps from rsfMRI data. First is a data-
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driven method that decomposes the fMRI data (voxels ×
timepoints) into multiple maximally independent spatial
maps and corresponding time courses, and select the mean-
ingful components as the FC networks. The second method
uses prior knowledge of brain structure to define a set of
brain regions and limit the FC analyses to these regions.
These predefined regions or regions of interest (ROI) are
assembled in a three-dimensional labeled matrix called the
brain atlas. The FC maps are then generated for the whole
brain by finding a Pearson’s Correlation between averaged
time-series of each pair of ROIs [2], or by using frequency-
domain methods such as Coherence [3] or wavelet decom-
position [4].

A key requirement of the second method used for FC
mapping is the brain atlas. The number of nodes (or ROIs)
in atlas defines the resolution of atlas. Multiple atlases have
been used in prior studies [5], [6], [7], but their effects
on the features of FC maps has never been studied. This
is significantly important for the machine learning based
classification studies where features of FC maps are used to
develop classifiers for classification of given data into either
Schizophrenia or healthy group [5], [6], [7]. Notably, ana-
lyzing the FC maps of Schizophrenic brains has revealed the
abnormal neural connectivity of a wide range of functional
sub-networks of the brain. Therefore, choosing a proper
resolution of atlas is highly important to track the widespread
abnormal neural activities of Schizophrenic brains.

In this work, we have compared the effects of three widely
used atlases for the FC mapping of Schizophrenic brains.
For quantitative evaluation of these effects, we developed
a support vector machine (SVM) based two-class classifier
and compared the classification accuracy, specificity and
sensitivity of the three classifiers based on the three atlases.

II. METHODS
A. Data acquisition

We downloaded two sets of data from two different
publicly available databases. The first database was the
OpenNeuro database from where we accessed the data
available in the UCLA consortium for Neuropsychiatric
Phenomics LA5c study [8] (accession number: ds000030).
While there were other MRI data sets in this database,
only the rsfMRI data of 121 healthy and 47 Schizophrenia
subjects was used in this study. The detailed scan parameters
for the T1-weighted structural scans and the EPI sequence
for rsfMRI are described in [8] for this data set. During
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Fig. 1. Overview of data processing steps involved in developing the SVM based classifier.

the rsfMRI data collection, the participants were asked to
remain relaxed and keep their eyes open for five minutes.
The second database was the Centers of Biomedical Research
Excellence (COBRE) [9] from where we took 73 healthy
and 71 Schizophrenia subjects. The detailed scan parameters
for the T1-weighted structural scans and the EPI sequence
are shown in [9]. During data acquisition, all subjects were
instructed to keep their eyes open and stare at fixation cross.
We combined the data from the healthy and Schizophrenia
subjects in these two data sets to create two groups with 194
healthy and and 118 Schizophrenia subjects. We calculated
the temporal signal to noise ratio (tSNR) as per [10] and
found it to be similar for the two groups of healthy (241±70)
and Schizophrenia (216±63) subjects.

B. Data pre-processing

We pre-processed the raw rsfMRI data with the SPM12
toolbox (http://www.fil.ion.ucl.ac.uk/spm/). The data was
available in NIfTI format and pre-processing included
five operations: slice timing correction, realignment, co-
registration, normalization, and smoothing. These operations
transformed the raw rsfMRI data into a standard Montreal
Neurological Institute (MNI) space, where the 3D brain
volume data was mapped to the transformed space of size
91×109×91. The spatial resolution of each voxel was se-
lected as 2 mm3. Then, the time-series blood oxygen level
dependent (BOLD) signal of each voxel was filtered in the
frequency range of 0.01 to 0.1 Hz.

C. Generation of functional connectivity maps

After pre-processing, the 3D brain volume was parcellated
using three different atlases: (1) Dosenbach 160 ROIs [11]
combined with bilateral Amygdala and Parahippocampus
[12], which makes it a 164 ROI atlas, (2) Brainnetome atlas
with 246 ROIs [13], and (3) Automated Anatomical Labeling
(AAL) atlas with 116 ROIs [14]. For a fair comparison of
the resting state networks present in each of the three atlases,
the Yeo 7 resting-state (RS) network atlas [15] was overlaid
on each of these atlases, as described by [16], to obtain the
7 RS networks corresponding to the three atlases.

After parcellation, an averaged time-series was calculated
for each region in each of the atlases. This resulted in a

matrix Yi ∈ Rn×150, where n is the number of ROIs and 150
is the time-points for the ith participant. Then, a n× n FC
matrix was computed for each participant, whose elements
correspond to the Pearson’s correlation between each pair
of the regions. Since FC matrices are symmetric, the upper
triangular part of the matrix was arranged in an array of size
ñ = (n × (n − 1))/2, representing the FC-vector for each
of the ith subject. The FC-vectors were mean-subtracted and
normalized to make them comparable. For each of the three
atlases, 194 and 118 FC-vectors were created for the healthy
and Schizophrenia subjects, respectively.

D. Machine learning with Support Vector Machine

Every element of the FC-vector was considered as an
independent variable with measurements from two groups:
healthy controls (194 data points) and Schizophrenia (118
data points). Two-sample paired t-test was applied on these
groups for each element of the FC-vector to find the elements
with significant differences (p ≤ 0.01) between the two
groups. Applying such statistical filter reduced the dimen-
sion of the FC-vector of the ith subject to Di ∈ Rm×1,
where m is the number of connections with significant
differences. This data was assembled in a m × p matrix,
where p is the number of subjects used in training as: D =
[D1, D2, ..., Dp], D ∈ Rm×p. The m dimensions of Di were
further reduced to m̃ (m̃ < m) with m̃ covering 95% of the
variance by applying Principle Component Analysis (PCA)
to D. A two-class SVM based classifier was then trained
to classify the data into healthy or Schizophrenia groups. A
polynomial of degree 2 was used as the kernel function to
create the SVM hyperplane. Leave-one-out cross-validation
was applied to evaluate the classifiers with following metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Specificity =
TN

FP + TN
(2)

Sensitivity =
TP

TP + FN
(3)
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Fig. 2. (a-c) Visualization of nodes of the 3 atlases. The size (or diameter) of a given node indicates the total number of other nodes which are connected
to this given node and with significantly different FC between healthy and Schizophrenia groups. Colour of the nodes indicates the resting state network
they belong to. Maps created by Brain-Net viewer [17]. (d-f) Proportion of intra and inter connected significant nodes in each network.

Here, True Positive (TP) means the correctly diagnosed
patients, False Positive (FP) means incorrectly identified
patients, True Negative (TN) is correctly diagnosed controls
and False Negative (FN) is incorrectly identified controls.

III. RESULTS
Fig 2 (a)-(c) show the seed voxels of each ROI in the three

atlases. The size of a node indicates the number of nodes
connected to this node with significant difference (p < 0.01)
between the two groups: healthy and Schizophrenia. The
color of a node indicates the resting state functional network
to which the node belongs. We can notice the increase in
density of the significant nodes in the same network from
(a) to (c) with resolution of atlases varying from 116 to 246.
The seed position is also different across the atlases which is
an important factor that can affect the classification results.

Fig 2 (d)-(f) shows the percentage distribution of sig-
nificant nodes within and across the different resting state
functional networks. All the three atlases show about 20-
25% of significant nodes belonging to the default mode and
the somato-motor networks of which at most 8% belongs
to the same network (intra-network connectivity). The other
network shows the nodes which do not belong to any of the
Yeo 7 networks [15]. The cross validation results from Table
I indicate that the classifiers developed with FC maps from
high-resolution Dosenbach and Brainnetome atlases have
similar accuracy which is higher than the AAL atlas. Notably,
the sensitivity and specificity are best for the Dosenbach and

the Brainnetome atlas based classifiers, respectively. We also
performed the permutation tests 1 and 2 as per [18] and found
that the classification accuracy achieved was statistically
different from chance level classification.

TABLE I
LEAVE ONE OUT CROSS VALIDATION RESULTS

Atlas Accuracy [%] Sensitivity [%] Specificity [%]
AAL 73.40 53.39 84.54

Dosenbach 83.65 72.88 90.21
Brainnetome 85.26 72.03 93.30

IV. DISCUSSION

We presented the effect of resolution of atlases on the
capability of SVM based classifier in classifying a given data
into healthy controls or Schizophrenia groups. Choosing an
atlas of certain resolution decides the number of ROIs and
the number of voxels within an ROI. Some atlases cover the
whole brain whereas some atlases only specify a seed point
with a spherical region around the seed point chosen as the
ROI. We have included both kinds of the atlases in our study.

Each mental health disorder affects the resting state func-
tional networks of the human brain in a different way.
Therefore, it becomes very important to choose an atlas
with a proper resolution. While higher resolution atlases
increase the computation time and demand larger memory
for computations, our results indicate that they seem to
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be necessary for analysis of FC maps in Schizophrenic
brains. Prior studies indicate that there are impairments in the
connectivity of the default mode network in Schizophrenic
brains [19], [20]. We observed similar results in Fig 2 (d)-
(f) with about 20-25% of the significantly different FC pairs
belonging to the default mode network.

Noting from Fig 2 (a)-(c), the AAL and Dosenbach atlases
have significant nodes in the cerebellum and sub-cortical
regions. This indicates that these are important regions to
observe in a Schizophrenic brain. However, since these
regions are not present in any of the Yeo 7 networks, all
the significant FC pairs belonging to these regions have
become part of the other network in Fig 2 (d)-(f). Moreover,
there are more ROIs in the cerebellum region of AAL atlas
as compared to the Dosenbach atlas, but the Brainnetome
atlas has no nodes in the cerebellum region. Also, there
are few sub-cortical nodes in Dosenbach atlas. Noting from
Fig 2 (d), we can observe around 12% of important nodes
in the intra network connectivity of the other network,
which indicates that connections within sub-cortical and the
cerebellum regions are also impaired in schizophrenic brains.
The Dosenbach atlas does not have any nodes in the limbic
network. Therefore, no significant nodes appeared in Fig 2
(b, e). However, since significant inter- and intra-nodes are
present in Fig 2 (d, f) in AAL and Brainnetome atlases in
the limbic network, they seem important in Schizophrenia.

We also ran the SVM classifier 1000 times, each time
with a random selection of healthy (=145) and Schizophrenia
(=88) subjects for training and the rest for testing, making
a 75-25% train-test split. This resulted in 1000 accuracy
values. The Brainnetome Atlas performed the best with
(mean ± std) accuracy of 81.95 ± 4.15 compared to AAL
with 71.37± 4.17 and Dosenbach with 80.34± 4.51.

It is worth noting that the AAL and the Brainnetome
atlases cover the whole brain region, i.e on average the AAL
atlas has 1598 voxels per region and Brainnetome atlas has
an average of 571 voxels per region. On the other hand,
Dosenbach atlas just considers a 5 mm sphere around the
seed voxel and has on an average of 122 voxels per region.
Despite the differences in Dosenbach and Brainnetome at-
lases, we still found them to be better than AAL atlas in
terms of accuracy, sensitivity and specificity and attribute it
to their high resolution compared to the AAL atlas.

V. CONCLUSION AND FUTURE WORK

We compared the effect of three different atlases and found
the Brainnetome 246 atlas to be the best performing atlas in
terms of the accuracy and specificity of classification. Future
work should compare Brainnetome 246 atlas with other
widely used atlases and test its classification accuracy with
other classifiers before accepting it as the best performing
atlas for Schizophrenia studies.
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