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Abstract— In this study, the contact image
photoplethysmography (iPPG) technique was used through a
smartphone video camera, and its usefulness was explored
under baseline conditions, stress induced by Stroop test
and recovery, taking as reference the heart rate variability
(HRV) extracted from the electrocardiography (ECG) in
two conditions: 1) spontaneous breathing, and 2) controlled
breathing at a fixed rate of 6 breaths per minute. Thanks to the
use of smartphones, the measurements were made in the homes
of the volunteers, who were provided with the measurement
systems. Linear temporal and spectral, as well as nonlinear
indexes (Poincaré plot and binary symbolic dynamics) were
explored for HRV and pulse rate variability (PRV). Similar
results were found for ECG-based HRV and iPPG-based PRV,
corroborating the usefulness of iPPG via smartphones in HRV
studies, providing an interesting alternative to perform HRV
analysis outside research and clinical settings.

Clinical Relevance— This study shows the use of a smart-
phone to extract iPPG-based PRV time series and their linear
and nonlinear indexes as a surrogate for ECG-based HRV
during stress and a controlled breathing maneuver.

I. INTRODUCTION

Stress is a universal phenomenon that negatively impacts

most people and can be defined as the physiological response

to a threat, whether physical or psychological, that an organ-

ism faces, so that stress is actually a necessary mechanism of

survival. However, when this response is forced to maintain

itself for a prolonged period, the body loses the ability

to regain homeostasis which can have short- or long-term

effects depending on its duration and intensity. Thus, stress

has been linked to various problems and disorders [1].

The level of stress can be assessed using indicators

such as heart rate variability (HRV) or pulse rate vari-

ability (PRV) obtained from electrocardiography (ECG) or

photoplethysmography (PPG) signals, respectively [1]. LF

could be mostly related to sympathetic activation, however,

parasympathetic activation is also present. Words with zero

variations based on symbolic dynamics have been related

to sympathetic activation during stress conditions, compared

with a baseline state. The indexes of high frequencies, the

mean and standard deviation, as well as the patterns with one

variation based on symbolic dynamics, have been reported
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lower during stress. This is due to sympathetic activation and

parasympathetic withdrawal during stress [2], [3].

Cardiorespiratory information is generally obtained us-

ing specialized biomedical devices, such as ECG, PPG,

and spirometers, limiting stress studies outside of clinical

or research settings that are not readily available to the

general population. Recently, the use of smartphones has

been proposed since they are ubiquitous devices that have

various cost-effective sensors already incorporated, which

allows them to be used in monitoring applications of vital

signs, mainly for the estimation of the heart rate (HR) [4],

accordingly called pulse rate (PR), but also to estimate PRV

via contact or remote modalities of contact image photo-

plethysmography (iPPG) [2]. Although being comfortable,

the use of remote iPPG has limitations related to user privacy

due to the acquisition of video sequences focused on the

face, as well as being highly susceptible to motion artifacts.

In the contact iPPG aproach, the smartphone video camera

is used analogously to the photoreceptor in traditional PPG,

while the light-emitting diode (LED) of the flash is used

as the light source [5]. Currently, most people have access

to smartphones allowing to obtain and process information

from the outside in real time, which makes smartphones an

attractive option to use them as physiological monitors, e.g.

to assess stress in everyday conditions, where you do not

have access to sophisticated equipment, e.g. in confinement

due to the SARS-Cov-2 pandemic.

In this study, the contact iPPG technique via a smartphone

to obtain information on PRV during maneuver involving

induced stress, using the Stroop test, taking HRV information

derived from ECG as a reference, was explored. To this

end, the iPPG-based PRV time series were compared to

ECG-based HRV ones. Then, their corresponding linear and

nonlinear indexes were extracted and compared.

II. METHODS

A. Acquisition protocol

For this study, twelve (N=12) volunteers were recruited

(6 men and 6 women), with an age of 18 to 25 years and a

normal body mass index (18.5 – 24.9 kg/m2). Before starting

the measurements of any volunteer, their informed consent

was provided and obtained according to the Declaration of

Helsinki. ECG and PPG signals were acquired with the

Biosignalsplux® system (PLUX Wireless Biosignals, Lisboa,

Portugal) with the same sampling rate of 1000 Hz, where

the iPPG signal was used to align the acquired ECG signal

with the smartphone-based iPPG one. Lead CM5 was used

for the ECG, and the pulse signal was acquired in the left
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hand, with the sensor placed on middle finger. The video

sequences, from which the iPPG signals are extracted, can be

acquired with any commercially available mid-range smart-

phone and in this study, the Galaxy S4 smartphone (Samsung

Inc. Seoul, Korea) with Android operating system (Android

4.2.2.) was used. The left index finger covered both the

camera and the smartphone flash. The acquisition was carried

out simultaneously with the two acquisition systems for 45

minutes in which the volunteer remained seated in front

of a monitor. The processing was performed in MATLAB

(The Mathworks, Natick, MA, USA). An example of data

acquisition is shown in Fig. 1. Each volunteer performed

four training sessions to maintain controlled breathing, with

a frequency of 6 breaths-per-minute (bpm). The protocol

consisted of performing two tests (A and B), following

a random order. Test A and B consisted of three phases,

each one of 5 minutes: baseline, stress and recovery. The

Stroop test was used to induce stress in both tests. In the

test B, during baseline and recovery phases, the volunteer

breathed at 6 bpm, while at test A the volunteer breathed

in a spontaneous fashion. The Stroop test phase consisted

of selecting (clicking with opposite hand of the one with

sensors was used) the name of the color that appeared on

the stimulus screen in the response screen. The background

color of the response screen and the response time varied,

speeding from 3 to 1 s, as the test progressed. An example

of the stroop test is shown in Fig. 1. On the other hand

a self-report was prepared where it was asked “How much

did you feel mentally stressed?” and a visual analogue scale

was provided with values from zero (no stress) to ten (high

stress) to asses the level of perceived stress. All signal

acquisition was performed in regular house rooms without

noise, without distractions, with the regular ambient light

conditions, between 10 am and 1 pm. It is worth mentioning

that thanks the usefulness of the mobile solution, all signal

acquisition was done during pandemic lockdown, at the

respective home of the volunteers.

Figure 1: Stroop test and acquisition setup.

B. Signal processing

The iPPG signal was extracted from the videos acquired

at 30 fps, using a 320x240 pixels resolution, inside a rect-

angular pixel region of interest (ROI) of 40% resolution,

centered on each frame. The iPPG signals were extracted for

the RGB video channels, by means of the spatial average of

the intensity (i) the ROI at each instant.

iPPGG(t) =
1

MN

∑

m,n∈ROI

iG(t,m, n) (1)

where G denotes the green channel, t is the instant of the

current frame, M and N are the number of rows m and

columns n of the ROI, respectively. The green channel was

used becaused it provides a better signal for the iPPG,

in agreement with previous studies [5]. After the signal

was normalized, the obtained iPPG signal was resampled

at 1000 Hz, for comparison purposes with reference signals.

Finally, a 5th-order Butterworth bandpass filter with cutoff

frequencies of 0.3 and 3.5 Hz was used. The cross-correlation

function between the PPG and iPPG signal was used to

synchronize acquired signals with the two different systems.

R wave peaks from ECG were automatically detected using

the Pan-Tompkins algorithm [8]. On the other hand, to detect

the local maxima of iPPG signals, first a derivative filter was

used. Subsequently, a 1.5-second moving window was used

to find the local maximum points. Minimum and maximum

duration thresholds of 0.2 and 2 s, respectively, between one

peak and the next were considered. Artifacts were eliminated

by taking two thresholds; one at 3 times the variance plus

30% of the maximum and another at ± 50% of the mean.

Finally, we proceeded to manual correction, if required, for

ECG R peak and iPPG maxima.

The beat-to-beat intervals (BBI) were obtained from the

ECG and iPPG as HRV and PRV time series, respectively.

The mean was subtracted and the trend was eliminated. The

time series were resampled at 4 Hz to estimate their Power

Spectral Density (PSD) using the Welch method using 2048

frequency bins, and 8 Hamming windows with a 50% overlap

between them. An example of the HRV and PRV time series,

obtained from the ECG and iPPG, respectively, and their

corresponding PSD, is shown in Fig. 2.

Figure 2: Example of time series and PSD of HRV and PRV

in the baseline phase of test B (metronome breathing).
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C. Heart rate variability indexes

The following indexes of the HRV and PRV time series

were calculated:

• Temporal indexes: BBImean, standard deviation

(SDNN), the squared root of the averaged sum of

squared length differences between BBI (RMSSD) and

the percentage of consecutive BBI that differ by more

than 50 ms from each other (pNN50).

• Spectral indexes: TP (total power, 0-0.4 Hz), LF (low

frequency, 0.04-0.15 Hz), HF (high frequency, 0.15-0.4

Hz ), LF/HF, LFnu and HFnu.

• Non-linear indexes: Poincaré plot: The duration of the

current beat is plotted on the x-axis, while the duration

of the next beat is plotted on the y-axis, so that each

point corresponds to two successive beats: SD1 is the

standard deviation of the orthogonal intervals of the

points BBIn, BBIn+1 to the transverse diameter of

the ellipse, it is also related to RMSSD [6]. SD2 is

the standard deviation of the orthogonal intervals of

the points BBIn, BBIn+1 to the longitudinal diameter

of the ellipse [7]. Symbolic dynamics: The series of

intervals BBIi (i = 1, ..., N) is transformed into a

binary symbolic series by two different approaches. In

the first approach, the series of differences ΔBBIi
= BBIi - BBIi−1 (i = 2, ..., N) is calculated and

the symbolic sequence is created according to the

sign of each difference: Si= 0 if ΔBBIi ≥ 0 or

Si=1 if ΔBBIi < 0. In the second approach, the

difference series ΔBBIi is transformed into a binary

series according to a predefined threshold. The binary

encoding represents whether the absolute value of the

difference ΔBBIi is below or above an empirically

determined threshold τ . Tests of 5 to 50 ms were

performed in steps of five and it was found that the

value of τ = 15 ms is the one that provides the most

information about the changes in the signal: Sτ ,i= 0

if |ΔBBIi| < τ or Sτ ,i = 1 if |ΔBBIi| ≥ τ . All

subsequences of length k = 3, are classified as follows:

0V, 1V and 2V sequences (with zero, one and two

variations between successive symbols, respectively).

Subsequently, the relative frequency of each pattern

category is calculated for both symbolic sequences, i.e.

P0V%, P1V%, P2V% and P0Vτ%, P1Vτ% and P2Vτ%
[3].

D. Comparison between HRV and PRV

The performance of the smartphone-based PRV was com-

pared against the ECG-based HRV by means of Bland-

Altman graphical analysis, the mean absolute error (MAE),

the root mean square error (RMSE) and the correlation

coefficient (r). Although different number of beat were

considered for each subject, in the Bland-Altman analysis

no one seemed to contribute predominately over the others.

E. Statistical analysis of HRV and PRV indexes

The criterion of normality of the HRV and PRV indexes

results was evaluated using the Kolmogorov-Smirnof test.

Accordingly, the differences between the phases (baseline,

stress and recovery) were evaluated using the Kruskal-Wallis

test and the tukey-kramer post hoc rank test was used. Mul-

tiple comparison tests were made based on the Bonferroni

test. The difference between tests (A: spontaneous breathing,

B: metronome breathing) was evaluated with the two-sided

Wilcoxon rank sum test.

III. RESULTS

The aim of the paper was to test if the iPPG-based PRV

series and indexes are a surrogate of ECG-based HRV ones

during stress and a controlled breathing maneuver. Table

I shows the comparison between the time series of HRV

based on ECG and PRV based on iPPG (smartphone). Results

for RMSE in beats-per-minute (BPM), MAE, r and Bland-

Altman bias and limits of agreement (LoA) are shown for

each phase of each test. The correlation coefficient shows a

strong positive association between the values obtained by

HRV and PRV. Both RMSE and MAE were lower in test

A compared to test B, and lower during the baseline stages

with respect to the stress phase of both tests.

Table II summarizes the results of HRV and PRV that have

statistically significant differences with respect to the stress

phase. The statistically significant differences between test A

and test B are also shown in Table II. Regarding comparison

results between HRV and PRV, LF index showed similar

significant differences in test A for HRV and PRV, while

in test B, the indexes with similar significant differences

were LF, LFnu, HFnu, LF/HF and P1V% during baseline

and recovery phases. On the other hand, the indexes SDNN
(baseline), SD2 (baseline), P0V% (recovery), P1Vτ% (re-
covery) and P1Vτ% showed statistical differences between

phases or tests by HRV, but not by PRV.

IV. DISCUSSION

Given that the correlation coefficient between the PR and

HR time series shows a strong linear relationship and the

Bland-Altman bias was close to zero, the results shown

in Table I were expected to provide similar information

on the HRV and PRV indexes. Due to the influence of

controlled breathing on Test B, Test A (phases performed at

spontaneous breathing) can be differentiated from this test in

most indexes in the baseline and recovery phases. Although

the stress phase was the same for both tests, the index P1V%
shows a significant difference between test A and test B,

which could be due to the influence of controlled breathing

before the phase of stress in test B. The above shows

of how nonlinear indexes provide information that cannot

be obtained with linear indexes. P1V% is related to the

parasympathetic, but it acted differently than expected, since

under stress conditions it showed a higher value compared to

baseline and recovery. However, when a non-zero threshold

(P1Vτ%) was used, in test B, it was lower in stress compared

to baseline and recovery with HRV, and lower in stress

than in baseline with PRV. This result could be due to

greater vagal activity during baseline and recovery phases

in comparison with stress. Because the LF band contains
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the frequency corresponding to the controlled breathing, it

increased in the corresponding phases, in the same way as

LFnu and LF/HF. As expected, P1Vτ% and SDNN, were

lower in the stress with respect to the baseline and recovery

phases of test B. This may be because breathing at 6 bpm

promotes synchronization of the respiratory and cardiac sys-

tem. During inhalation there is more blood available and the

oxygen concentration in the alveolus is maximum, improving

gas exchange. This helps to improve the subject’s adaptation

to stress by promoting greater respiratory efficiency and

higher HRV [9].

In the future, we are considering causing a higher level

of stress, improving monitoring of controlled breathing,

increasing the studied sample size, and taking into account

the respiratory signals also estimated from the iPPG signal.

V. CONCLUSIONS

In this work, a smartphone was used to obtain information

from the contact iPPG-based PRV time series and com-

pared with the ECG-based HRV time series. Thanks to the

usefulness of the mobile solution, it could be done during

pandemic lockdown, at home. Linear and non-linear indexes

of HRV and PRV were calculated and compared in order to

differentiate the stress phase from the baseline and recovery

phases. It was expected to find more significant differences

between the baseline and recovery phase with respect to

stress during test A (spontaneous breathing), as happened

with test B (controlled/metronome breathing). Although,

some indexes show unexpected behavior most of the indexes

showed similar results for both methods, suggesting that the

use of contact iPPG via a smartphone could provide similar

information to the ECG.
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TABLE I: Performance analysis between HRV (ECG) and PRV (iPPG) time series

Test A Test B
Index Baseline Stress Recovery Baseline Stress Recovery

RMSE (BPM) 2.17 ±1.9 2.49 ±2.4 2.43 ±2.0 5.33 ±5.0 6.31 ±7.3 5.64 ±6.4
MAE (|BPM|) 1.34 ±1.3 1.70 ±2.0 1.23 ±1.1 3.60 ±4.1 4.30 ±5.7 3.70 ±4.7

r 0.89 ±0.15 0.91 ±0.12 0.91 ±0.14 0.83 ±0.26 0.75 ±0.34 0.83 ±0.24
Bland-Altman analysis (bias(LoAinf, LoAsup)) -0.019 (-4.50, 4.46) -0.004 (-5.10, 5.09) 0.023 (-4.12, 4.13) 0.179 (-9.92, 10.37) 0.240 (-11.86, 12.32) 0.251 (-9.91, 10.40)

Data are expressed as a mean ± SD for RMSE, MAE and r and mean of bias(LoAinf, LoAsup) for Bland-Altman analysis.

TABLE II: Comparison of HRV/PRV indexes between both methods (ECG and iPPG).

comparison between phases - ECG comparison between phases - iPPG
Index Baseline Stress Recovery Baseline Stress Recovery

Test A (spontaneous breathing)
BBImean(s) 0.80 (0.70, 0.91) 0.71 (0.69, 0.87) 0.78 (0.71, 0.92) 0.80 (0.71, 0.90) 0.72 (0.69, 0.87) 0.78 (0.69, 0.92)
RMSSD (s) 0.05 (0.03, 0.06) 0.04 (0.03, 0.06) 0.05 (0.04, 0.08) 0.04 (0.03, 0.07) 0.04 (0.03, 0.05) 0.05 (0.03, 0.08)
SDNN (s) 0.05 (0.04, 0.08) 0.06 (0.04, 0.07) 0.07 (0.05, 0.09) 0.05 (0.04, 0.08) 0.06 (0.04, 0.07) 0.08 (0.05, 0.10)

LF (s2) 0.21 (0.11, 0.48) 0.18 (0.11, 0.23) 0.47 (0.27, 1.06)◦ 0.25 (0.12, 0.50) 0.20 (0.11, 0.24) 0.50 (0.30, 1.07)•
HF (s2) 0.22 (0.16, 0.66) 0.24 (0.15, 0.30) 0.26 (0.13, 0.71) 0.20 (0.18, 0.75) 0.23 (0.16, 0.32) 0.33 (0.15, 0.69)
LF/HF 0.75 (0.45, 0.92) 0.83 (0.45, 1.34) 1.36 (0.54, 3.22) 0.69 (0.48, 1.09) 0.80 (0.54, 1.17) 1.28 (0.72, 3.03)

LFnu (%) 43.1 (31.2, 47.2) 45.2 (31.2, 57.0) 57.25 (35.6, 74.84) 40.8 (32.7, 51.5) 44.5 (35.0, 53.3) 55.7 (42.0, 72.75)
HFnu (%) 56.8 (52.7, 68.7) 54.7 (42.9, 68.7) 42.7 (25.1, 64.3) 59.1 (48.4, 67.2) 55.4 (46.6, 64.9) 44.2 (27.2, 57.9)

SD1 (s) 0.03 (0.02, 0.04) 0.02 (0.02, 0.04) 0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 0.03 (0.02, 0.04) 0.03 (0.02, 0.05)
SD2 (s) 0.07 (0.05, 0.11) 0.08 (0.06, 0.10) 0.10 (0.07, 0.12) 0.07 (0.06, 0.11) 0.08 (0.06, 0.10) 0.14 (0.07, 0.13)

P0V (%) 29.9 (12.2, 44.3) 17.8 (12.5, 29.1) 32.9 (16.9, 49.4) 28.2 (16.2, 44.9) 17.9 (13.7, 28.5) 31.7 (19.8, 47.7)
P1V (%) 62.4 (47.2, 69.8) 66.5 (55.4, 70.7) 54.8 (44.9, 64.3) 61.0 (50.3, 70.9) 66.8 (59.6, 72.1) 58.8 (46.6, 70.0)
P1Vτ% 46.0 (39.4, 50.3) 37.6 (31.4, 45.6) 43.0 (35.0, 50.9) 28.5 (26.6, 42.2) 37.2 (27.2, 41.3) 41.0 (32.8, 47.7)

Test B (controlled / metronome breathing)
BBImean (s) 0.83 (0.73, 0.91) 0.77 (0.70, 0.88) 0.81 (0.73, 0.92) 0.83 (0.73, 0.91) 0.76 (0.70, 0.88) 0.79 (0.72, 0.92)
RMSSD (s) 0.07 (0.05, 0.09) 0.04 (0.03, 0.06) 0.06 (0.05, 0.09) 0.08 (0.06, 0.10)� 0.05 (0.04, 0.09) 0.08 (0.07, 0.10)�

SDNN (s) 0.11 (0.08, 0.12)◦�� 0.06 (0.05, 0.09) 0.11 (0.08, 0.13)◦� 0.10 (0.08, 0.12)�� 0.06 (0.05, 0.09) 0.11 (0.09, 0.13)◦�
LF (s2) 2.22 (1.53, 3.39)•�� 0.23 (0.15, 0.36) 2.46 (1.33, 3.40)•�� 2.26 (0.91, 2.78)•�� 0.30 (0.18, 0.49) 2.35 (1.12, 3.29)•��
HF (s2) 0.21 (0.10, 0.38) 0.20 (0.13, 0.25) 0.27 (0.10, 0.40) 0.32 (0.20, 0.65) 0.23 (0.13, 0.45) 0.44 (0.22, 0.57)
LF/HF 9.68 (7.36, 17.5)•�� 1.61 (0.68, 2.95) 10.1 (6.53, 13.6)•�� 6.84 (3.19, 12.9)•�� 1.26 (0.64, 2.08) 5.83 (2.95, 12.4)•��

LFnu(%) 90.6 (88.0, 94.6)•�� 61.6 (39.0, 74.6) 91.0 (86.7, 93.1)•�� 87.24 (76.0, 92.6)•�� 55.1 (39.1, 67.4) 85.3 (72.9, 92.4)•��
HFnu(%) 9.35 (5.39, 11.9)•�� 38.3 (25.3, 60.96) 8.95 (6.87, 13.2)•�� 12.7 (7.36, 23.9)•�� 44.8 (32.6, 60.9) 14.6 (7.51, 27.0)•��
SD1 (s) 0.04 (0.03, 0.06) 0.03 (0.02, 0.04) 0.04 (0.03, 0.06) 0.05 (0.04, 0.07)� 0.03 (0.02, 0.06) 0.06 (0.05, 0.07)�

SD2 (s) 0.14 (0.11, 0.16)◦�� 0.08 (0.06, 0.11) 0.15 (0.10, 0.17)•� 0.14 (0.10, 0.15)�� 0.08 (0.07, 0.12) 0.15 (0.11, 0.17)◦��
P0V% 59.8 (50.7, 62.4)•�� 24.6 (14.7, 40.2) 57.8 (51.2, 61.6)•�� 39.2 (24.3, 54.1)◦ 22.4 (7.87, 31.1) 39.1 (16.0, 57.3)
P1V% 38.2 (33.8, 43.2)•�� 54.1 (49.9, 60.2) � 39.2 (35.1, 42.0)•�� 41.9 (37.3, 45.7)•�� 53.6 (50.7, 56.5)�� 43.8 (36.6, 48.3)•��

P1Vτ% 55.8 (45.7, 60.5)•� 40.7 (36.1, 45.4) 49.9 (47.4, 55.5)◦� 51.7 (41.5, 56.3)• 29.6 (26.5, 42.6) 45.2 (31.6, 47.9)
Median (25, 75 pencertiles). Significant differences vs the stress phase. ◦p < 0.05; •p < 0.01 and between test A and test B �p < 0.05; ��p < 0.01
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