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Abstract— Transcranial Electrical Stimulation (TES) is a
promising tool for treating many neurological disorders, but
it classically results in diffused stimulation. Many optimization
algorithms have been proposed for focusing TES, commonly
by creating multi-electrode arrangements and choosing current
amplitudes such that the resulting current fields in the brain
are focused in the target region, and are as small as possible
outside the target region. Consequently, it is likely that such
optimization does not harness the non-linear nature of neural
dynamics, particularly their thresholding phenomenon, i.e.,
the observation that neurons fire only when the stimulating
currents are above a certain threshold. In this work, we
propose HingePlace which explicitly harnesses this thresholding
phenomenon by designing multi-electrode arrangements which
allow the electric fields outside the target region to be non-zero
but still below the stimulation threshold. In idealized simulated
models, we compare HingePlace with existing algorithms and
find that HingePlace performs strictly better, in some cases
providing ∼20% reduction in stimulated area for a specified
limit on maximum injected current.

I. INTRODUCTION
Transcranial Electrical Stimulation (TES) is an umbrella

term used for either stimulating or modulating the neural
activity of the brain using electrical currents delivered from
electrodes placed at the scalp. TES is a promising therapeutic
tool for many neurological diseases and disorders, including
but not limited to clinical depression [1], chronic pain [2],
Parkinson’s [3], and many more [4].

Traditionally, TES is performed using two large electrodes
(a cathode and an anode). This arrangement of electrodes
creates a diffused field in the brain causing a widespread
stimulation/modulation, even when only a focal stimula-
tion is desired. In recent years, advances have been made
(e.g. [5]–[9] and the references therein) on designing multi-
electrode TES arrangements and current patterns that create
fields which only have significant amplitude in a region of
interest (e.g. motor or somatosensory cortex). Such multi-
electrode arrangements can improve focality, which can
improve the clinical efficacy of TES-based therapies and help
develop more precise brain-machine interfaces [5]. In this
work, we refer to the problem of designing such electrode
montages and the injected current amplitudes as the problem
of electrode placement.
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Fundamentally, there are two challenges that make the
problem of electrode placement hard: a) Laws of physics
dictate that the currents generated by the electrodes at the
scalp diffuse as they travel through the layers of head, i.e.
scalp, skull and cerebrospinal fluid (CSF), making it hard to
constrain the area of stimulation; b) the amount of current at
each electrode, and the total current that is injected into the
scalp, cannot be too high (to avoid pain or tissue damage in
the scalp), making it hard to create high-amplitude electric
fields in the brain. Existing works formulate the problem of
electrode placement as a search/optimization problem [5]–
[9]. They divide the brain into two regions: region of interest
where we want the field to be high (which we call the focus
region), and the remaining region of “non-interest” where we
want the field to be low (which we call the cancel region).
The optimization problem is set up in such a way that its
solution is an electrode montage that produces the smallest
electric field (i.e. as close to zero as possible) in the cancel
region, given a desired amplitude of electric field in the focus
region (see Sec. III). These algorithms succeed in producing
focused fields, and, consequently, focused stimulation, in
simplified models (ranging from spherical head models to
real-head models), as well as in experiments (as recently
tested in [10]).

While the existing electrode placement algorithms [5]–[8]
are successful in creating focused electric fields, they do not
explicitly take advantage of the non-linear nature of neurons,
especially the thresholding phenomenon of neurons [11] (i.e.,
neurons only fire when the stimulating field is above a certain
threshold). For focused stimulation, one does not require
electric fields to be minimized in the cancel region. Instead, it
is sufficient that it be below the stimulation threshold (which
depends on the stimulating waveform1, but is fixed for a
given waveform). In this work, we propose HingePlace, an
algorithm for electrode placement that poses an optimization
problem that directly exploits the thresholding phenomenon
of neurons. HingePlace employs a loss function which only
becomes non-zero when the electric field is above a user-
specified threshold (Etol) in the cancel region, thereby allow-
ing for fields which can have significant non-zero current in
the cancel region, but provide more focused neural activation.

In order to quantify the gains of HingePlace with respect

1For simplicity, we assume that only one neuron-type is present, a
simplifying assumption that has been made in prior computational as well
(e.g. [9]). This best approximates gyri in the cortex where cortical columns
have a fairly regular structure with similar cell-types. However, it is only
an approximation, and hence experimental implementations might need to
test and adapt accordingly.
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to existing algorithms, we compare HingePlace with the
Directionally Constrained Maximization (DCM) algorithm
proposed in [7], in simulated (spherical head) models [12]
in Sec. V. DCM was shown in [7] to subsume most of
the existing TES electrode placement algorithms proposed in
literature, and therefore is a good candidate for comparison.
We observe that our method performs strictly better than
DCM in terms of the area of stimulation (approximated by
area of the electric field above a certain pre-defined thresh-
old), providing as much as ∼20% reduction in stimulated
area when the allowed injected current at each electrode is
moderately high (see Fig. 2).

The paper is structured as follows: Sec. II provides the
idealized system model which helps us specify the algorithm.
Sec. III makes explicit why existing algorithms minimize
the fields outside the region of focus (and not just keep
them below a threshold). Sec. IV specifies our optimization
framework, HingePlace, that aims to only keep the fields
outside the focus region below a specified threshold (Etol,
the “tolerable” level of the field). Sec. V provides an under-
standing, using idealized simulations, of when HingePlace
can outperform existing techniques in focused stimulation.
We conclude in Sec. VI with a discussion, including some
limitations of our work.

II. SYSTEM MODEL

We assume that, apriori N ∈ N locations are chosen on
the scalp, where we are allowed to place the electrodes. Let
I =

[
i1, . . . , iN

]T ∈ RN be an N -dimensional vector, where
ij represents the current injected at the j-th location. If no
electrode is placed at the j-th electrode location, then the
corresponding ij = 0. Therefore the vector I completely
describes an electrode montage, and the problem of electrode
placement can be reduced to finding the “optimal” I . A
frequent assumption made in electrode placement algorithms
is that the physics of the electrode placement problem is gov-
erned by the quasi-static Maxwell equations [13]. Therefore,
given the conductivities and geometries of all the layers of
the head, namely the scalp, the skull, the CSF and the white
and grey matter of the brain, and the current (injected by the
electrodes) at each of the location, we can calculate the field
in the brain using the Laplace equation [13]. The solution of
the Laplace equation can be found by discretizing the head
model and solving it using a numerical technique such as
Finite Element Method (FEM). This discretization yields the
following linear system [5], [7]:

TI = EI , T ∈ R3M×N , EI ,∈ R3M (1)

where M (typically � N) is the number of voxels into
which the head model is discretized, EI is the electric field
induced in the head in x, y and z direction (hence the size
3M ), T is the transfer matrix/function that maps the injected
currents to the induced electric field EI . T only depends on
the conductivity and geometry of the head model. A more
detailed explanation for deriving (1) is provided in [5], [7].

Using the above formulation, the problem of electrode
placement can be conceptualized as two sub-problems: a)

Defining some desired properties of the electric field E,
which we want to induce in the brain (e.g. electric field
should be high in the focus region and low in the cancel
region) and b) Inverting the over-constrained linear system
described in (1) to find the electrode montage described by
I , whose electric field EI satisfies the desired properties,
specified in a), as closely as possible (since (1) describes an
over-constrained system, it may not be possible to generate
an I , whose EI satisfies all of the desired properties).
Usually, an optimization framework is used for finding the
optimal I whose induced electric field EI satisfies the desired
properties specified in a), e.g. [5]–[8].

a)

c)

b)

d)

HingePlace

HingePlace

DCM

DCM

Fig. 1. a) Current Density generated by DCM at the upper hemisphere
of the shell at the depth of 1.3 cm projected onto the x − y plane; b)
Current Density generated by HingePlace at the upper hemisphere of the
shell at the depth of 1.3 cm projected onto the x−y plane; c) Corresponding
region of the electric field shown in a) that leads to neural stimulation for
DCM (approximated by area above 80% of the maximum field (see Sec. V-
E)); d) Corresponding region of the electric field shown in a) that leads to
neural stimulation for HingePlace (approximated by area above 80% of the
maximum field (see Sec. V-E)).

III. LIMITATIONS OF EXISTING APPROACHES

In a recent work [7], it was shown that many of the existing
algorithms for electrode placement are subsumed by the
DCM algorithm. Therefore, by analyzing the DCM algorithm
we can gain insight into a wide class of existing algorithms.
To that effect, we first give a description of DCM as proposed
in [7] in Sec. III-A. While the formulation of DCM presented
in III-A does not suggest that DCM minimizes the field in
cancel region, an equivalent formulation of DCM is derived
in Sec. III-B to show that DCM tries to find the optimal I
(see Sec. II) by minimizing the energy of the electric field
in the cancel region.

A. Directionally Constrained Maximization

The first step in DCM is to identify a region of interest
(focus region) and a region of non-interest (cancel) region.
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Let the focus region be denoted by F and the cancel
region be denoted by C. Then DCM seeks to maximize
the current/electric field intensity along the direction ~d =
[dx, dy, dz] in the focus region, while minimizing the field
magnitude in the cancel region through the following opti-
mization:

I∗ = arg max
I

DTΓFTfI, (2)

s.t ITTTc ΓCTcI ≤ α, ‖I‖1 ≤ 2Itot,

‖I‖∞ ≤ Isafe, 1TNI = 0.

Let us define and try to understand each term in (2).
The first term DTΓFTfI is a discrete approximation of the

integral of the electric field along the direction ~d in the focus
region, i.e.

∫
−→r ∈F

−→
d ·
−→
EI(
−→r )dV . Here, D ∈ R3N×1 is the

vector denoting the direction along which the electric field
for each voxel in F should be projected. ΓF ∈ 3N × 3|F |
(where |F | is the number of voxels present in the focus
region) is the matrix that results due to the integration
operation, and its elements are just volumes of each voxel
in the focus region. Tf ∈ R3|F |×N is the matrix constructed
from sub-sampling the rows of the transfer matrix T , which
correspond to the voxels lying in the focus region F . There-
fore TfI gives us the electric field EI for each voxel in the
focus region. The optimization problem seeks to maximize
the integral of electric field along the direction ~d in the
focus region, which is equivalent to maximizing the average
intensity of the electric field in the focus region along ~d.

The quadratic term ITTTc ΓCTcI represents the energy
of the electric field in the cancel region C. The particular
form of the quadratic term again stems from discretizing the
integral for calculating the energy of the field in the cancel

region:
∫
−→r ∈C

∥∥∥−→EI(−→r )
∥∥∥2
2
dV . Here, Tc ∈ R3|C|×N (where

|C| is the number of voxels present in the cancel region)
is the matrix constructed from sub-sampling the rows of the
transfer matrix T , which correspond to the voxels lying in the
cancel region C, and ΓC ∈ 3|C| × 3|C| is the matrix that
results due to the integration operation, and is a diagonal
matrix with the diagonal elements being just volumes of
each voxel in the cancel region. Therefore the constraint
ITTTc ΓCTcI ≤ α bounds the electric energy below a certain
threshold α.

The constraint ‖I‖1 ≤ 2Itot restricts the total current
being injected from the electrode montage to Itot and the
constraint ‖I‖∞ ≤ Isafe restricts the maximum current
injected per electrode to Isafe, to ensure safe stimulation
(see Sec. I). The constraint 1TNI = 0 is present for satisfying
the Kirchhoff’s law, i.e. the amount of current going into the
head should be equal to the amount of current going out (1N
is just a N -dimensional vector of all ones). For the sake of
brevity, throughout this paper we will denote DTΓFTf by
Af , and ITTTc ΓCTcI by ‖AcI‖22 (which also defines Ac).

B. Limitations of DCM

As we mentioned earlier, it is not obvious from the
formulation described in (2) that DCM minimizes the electric

field in the cancel region. Therefore, in order to prove our
claim that DCM minimizes the electric field in the cancel
region, we define the following optimization formulation:

I∗ = arg min
I
‖AcI‖22, (3)

s.t AfI = Edes, ‖I‖1 ≤ 2Itot,

‖I‖∞ ≤ Isafe, 1TNI = 0.

We prove that solving (3) is equivalent to solving (2) (see
Appendix). As one can see from (3), the ideal optimal I
for DCM would be the one which satisfies AcI = 0, and
AfI = Edes. Therefore, DCM and by extension all the
algorithms subsumed under it over-penalize the electric field
in the cancel region and do not try to take advantage of the
thresholding phenomenon of neurons.

IV. HINGEPLACE

In this section, we propose HingePlace, an optimiza-
tion framework that explicitly tries to take advantage of
the thresholding phenomenon of neurons. The optimization
framework is given below:

I∗= arg min
I∈RN

diag(ΓC)T max
(
0, TcI−E+

tol

)
+

diag(ΓC)T max
(
0,−TcI−E−tol

)
, (4)

s.t AfI = Edes, ‖I‖1 ≤ 2Itot,

‖I‖∞ ≤ Isafe, 1TNI = 0.

where diag(ΓC) ∈ R3|C|×1 is just a vector consisting of all
the diagonal elements of ΓC defined in Sec. III-A, max(·) is
applied element-wise to each of the vector and E+

tol, E
−
tol ∈

R3|C|, whose elements specifies the level of electric field that
is tolerable in each voxel of the cancel region. A common
choice for E+

tol and E−tol is Etol13|C|, where 13|C| is the
vector of all ones, and Etol is some global level of electric
field that is tolerable. For the sake of brevity, we will denote
the loss function in (4) as Lhinge(I), i.e.

Lhinge(I) = diag(ΓC)T max
(
0, TcI−E+

tol

)
+

diag(ΓC)T max
(
0,−TcI−E−tol

)
. (5)

The only difference between (4) and (3) is in their loss
functions, i.e. Lhinge(I) for HingePlace and an l2 norm con-
straint ‖AcI‖22 in case of DCM-type approaches. Therefore,
in this section we only describe the role of Lhinge(I) in
HingePlace, since the role of constraints in (4) is the same
as it was in DCM.
Lhinge(I) can be thought of as a dis-

cretized version of the following integral:∫
C

max
(

0, ~E(~r)− ~E+
tol(~r)

)
+ max

(
0,− ~E(~r)− ~E−tol(~r)

)
dV .

On closer inspection, we see that Lhinge(I) will have a
non-zero value only if any component of ~E(~r) < ~E+

tol(~r)

or ~E(~r) 4 − ~E−tol(~r), where <,4 represent elementwise
inequalities. Hence, Lhinge(I) only penalizes the electric
fields which violate their upper or lower thresholds in
the cancel region, thereby allowing fields having non-zero
(albeit below pre-defined thresholds) amplitudes in the
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cancel region. In contrast, DCM-type approaches try to
minimize the electric field and bring them as close to 0
as possible. Because of this, DCM-type approaches are
“over-restrictive”, i.e. they disallow fields which have
significant non-zero electric field (but below the stimulation
threshold of neurons) outside the target region (see Fig. 1),
even if they provide better focus. In contrast, HingePlace
does not penalize such electric fields, and can actually find
such fields which can lead to potentially more focused
neural stimulation.

V. RESULTS

In this section we perform a comparison between Hinge-
Place and DCM by simulating a simplistic head model,
and comparing performance across a range of their hyper-
parameters (Edes, Itot, Isafe etc.). For implementing DCM,
we use the formulation described in (3), since in that case the
hyper-parameters for HingePlace and DCM are very similar.

A. Head Model

We use a 4-Sphere Head Model [12], comprising of skull,
scalp, CSF, and brain. The conductivities of the scalp, the
skull, the CSF and the brain were chosen to be 0.3 S/m,
0.006 S/m, 1.79 S/m and 0.33 S/m., and the thickness of the
scalp, the skull and the CSF were chosen to be 6mm, 5mm
and 1mm. The conductivity values were taken from [7], and
thickness values taken from [12]. The overall head radius
was chosen to be 9.2 cm. The forward model for the 4-
sphere head model was solved using analytical solutions
taken from [14].

B. Electrode Grid

We chose a uniformly spaced electrode grid of 91 elec-
trodes, each having 5 mm diameter, and an inter-electrode
spacing of 7mm (measured from one center of one electrode
to the center of the other). The electrodes are arranged in a
circular patch centered at the north pole. The overall radius
of the patch is 4cm.

C. Region of Interest

For the sake of simplicity, we chose the radial current
density as preferred direction for stimulation, i.e. the D
vector in Af (see Sec. III-A) points perpendicular to the
surface of the cortex. For the focus region, we chose a single
point at the north pole at a depth of 1.3cm from the scalp.
Since the goal was to compare the focality of the fields
produced by the HingePlace and DCM, choosing the focus
region as a single point provided the most focused fields. The
corresponding cancel region was chosen as a hollow ring,
with outer radius 3cm and inner radius 0.5cm at the surface
of the shell at a depth of 1.3cm from the scalp, with the
centre being the focus point. For creating the cancel matrix
we sampled this hollow ring uniformly at a spacing of 1mm.

D. Choosing Hyper-parameters

The difficult part of choosing the hyper-parameters
Edes, Isafe and Itot is that they all depend upon each
other, and a simple grid search across all of them can be
computationally expensive. Furthermore, the value of Edes
depends upon the kind of waveform being applied, e.g.
if we use a DC waveform, then it is believed that the
required Edes ≈ 0.6V/m [15], whereas [16] uses very
short pulse stimulation, generating electric field upwards of
50 V/m in the brain. Similarly, the acceptable values of
Isafe and Itot also depend on the waveform being applied.
Therefore to sidestep this problem, we use a conventional 2-
electrode configuration (e.g. that used in Transcranial Direct
Stimulation or TDCS) to serve as the baseline. With some
abuse of nomenclature, we call this “TDCS-type” electrode
configurations, as such configurations are commonly used in
clinical settings for TDCS, even though here we allow for
different (i.e., non-DC) current waveforms to be used. This
configuration provides baseline values of Edes, Itot and Isafe
against which other algorithms can be compared.

For simulating TDCS-type electrode configurations, we
placed two spherical electrodes of radius 3cm (surface area
= 28.3 cm2), one at the north pole and the other at the
south pole of the sphere. The injected current amplitude
was chosen such that the current density injected by the
electrode is 1 mA/cm2. The figure of 1 mA/cm2 was
chosen arbitrarily, since all the results are reported relative
to the parameters for TDCS-type configuration. From the
TDCS-type simulation, we calculated the electric field
at our focus region (since in our simulation the focus
region corresponds to a single point, we just calculated
the electric field at that point). The corresponding electric
field was 2.6V/m at the focus point. This was the Edes
which we used for both HingePlace and DCM. For
determining the hyper-parameter Isafe, we first calculated
Iinit, which is the current that would inject 1 mA/cm2

through the electrodes mentioned in Sec. V-B. A simple
calculation yields Iinit= 0.19 mA. Then we ranged across
different values of Isafe in the following manner Isafe2

= [10Iinit, 15Iinit, 20Iinit, 25Iinit, 30Iinit, 40Iinit, 45Iinit,
50Iinit, 100Iinit]. For a given value of Isafe,
we chose four different values Itot =
[40.5Isafe, 20Isafe, 12.5Isafe, 5Isafe], corresponding
to 4 different situations. Itot = 40.5Isafe refers to the
situation for which the l1 constraint in (3) and (4) does not
matter, since the maximum current that could be injected
due to the l∞ constraint is 91Isafe, whereas on the other
extreme 5Isafe refers to the condition where l1 constraint
is extremely dominant over the l∞ constraint in (3) and
(4). For HingePlace, an additional hyper-parameter needs
to be specified, which is Etol. For the tangential direction
we chose Etol to be zero and along the radial direction, we
chose three values of Etol = [0.7Edes, 0.5Edes, 0.1Edes].

2Choosing below 10Iinit results in our constraint set being empty, i.e.
there was no possible electrode montage that could generate the required
Edes
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c)
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Fig. 2. Plot of the relative decrease in area above 80% for HingePlace
with respect to DCM for different values of Isafe. The x-axis only show
the multiplier applied to Iinit (see Sec. V-D) for different values of Itot:
a) Itot = 40.5Isafe, b) Itot = 20Isafe, c) Itot = 12.5Isafe and d)
Itot = 5Isafe.

E. Simulations

To compare HingePlace and DCM, we solved the op-
timization frameworks for HingePlace and DCM, using
the CVXPY package [17], [18] in python for the hyper-
parameters specified in Sec. V-D. We calculated the corre-
sponding fields induced by both HingePlace and DCM at
the shell of depth 1.3cm from the surface of the scalp (1mm
depth into the brain in our model). Then from this electric
field, we approximate the neural response, by calculating
the area above 80% of the maximum electric field on that
shell. This threshold of 80% is borrowed from a recent
paper [19], where authors experimentally calculated the area
of the stimulation when exposed to transcranial fields using
local field potentials (LFPs) in slices and found that no neural
response is observed after the field has decayed to ∼ 80%
of its maximum values. However, we expect similar results
to hold for other thresholds. The values of resulting area of
stimulation are plotted in Fig. 3. We also calculate the relative
decrease in area for HingePlace with respect to DCM, i.e.
(ADCM −Ah)/Ah, where ADCM is the area above 80% for
DCM approaches and Ah is above 80% for HingePlace. The
relative decrease is shown in Fig. 2 for different choice of
hyper-parameters.

From Fig. 2, we observe that in terms of stimulated area,
HingePlace always performs at least as well as DCM, with
better performance for moderately high Isafe and Itot. For
Etol = 0.1Edes, the performance of HingePlace and DCM
are almost identical, as expected. One trend we observe
is that if either Isafe or Itot is too low, both DCM and
HingePlace perform similarly. This is expected, since for
very low Isafe or Itot, the constraint set for both DCM
and HingePlace is very small, therefore their results do not
significantly differ. We see that as we increase Isafe, the
constraint set for both DCM and HingePlace starts becoming
larger, and we see improvements in the performance of

HingePlace when compared to DCM, but after a certain point
the improvements start decreasing, which is also expected.
Since, DCM type approaches are over-restrictive we would
expect HingePlace to perform much better for moderately
sized constraint set, for which the over-restrictiveness of
DCM would cause its performance to degrade. For very large
constraint sets (the situation where Isafe is high), the over-
restrictiveness of DCM-type approaches is not a significant
issue, and we see the improvements of HingePlace decrease.

a)

c)

b)

d)

Fig. 3. Plot of the area above 80% for HingePlace and DCM for different
values of Isafe. The x-axis only show the multiplier applied to Iinit (see
Sec. V-D) for different values of Itot: a) Itot = 40.5Isafe, b) Itot =
20Isafe, c) Itot = 12.5Isafe and d) Itot = 5Isafe.

VI. DISCUSSION AND CONCLUSION

We described a new approach for electrode placement,
HingePlace, that explicitly exploits the thresholding phe-
nomenon of neurons to achieve focal neural stimulation. A
comparison with DCM, which subsumes a large class of
electrode placement algorithms, revealed significant gains in
terms of focality for HingePlace, in silico. The validation
in our work is limited to spherical head models here,
and comparison of these approaches in more realistic head
models remains to be done. We approximate the neural
response of the brain to transcranial fields by a simple
thresholding function. While it is commonly believed that,
to a first order, the neural response can be approximated
by a thresholding function (e.g. for fixed waveform shape,
and changing amplitude), actual neural responses are quite
complex. Hence, an experimental testing of such patterns
is needed. There is known to be significant variability in
the thresholds of neurons (across types, and even within
the same type), which can make choosing the threshold
for HingePlace difficult, as a high threshold might lead to
spurious stimulation in the cancel region, and a low threshold
might lose the advantages offered by HingePlace. Also, even
though electric fields might be low enough for not causing
stimulation, they still might modulate the activity of neurons
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in HingePlace, so care might be needed while using Hinge-
Place (e.g. in chronic settings). Despite using the simplest
of nonlinear neural response (i.e. thresholding), we still saw
significant gains compared to existing algorithms. This shows
the potential of incorporating knowledge of neuron-types and
neural dynamics while designing TES electrode placement
algorithms. Neurons are highly non-linear systems, which
makes them hard to analyze but at the same time allows
creative strategies to harness this non-linearity to potentially
improve performance.

APPENDIX

A general tool for analyzing constrained convex optimiza-
tion problem is to use Lagrangian duals. First note that l1
constraint on a N dimensional variable can be represented
using 2N linear inequalities (see Appendix of [7]). We
provide an example for representing l1 constraint for a 3-
dimensional vector below:,

‖I‖1 ≤ 2Itot (6)

⇒
3∑
j=1

|ij | ≤ 2Itot (7)

⇒



1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1



i1i2
i3

 4

2Itot
2Itot
2Itot

 (8)

⇒GI 4 2Itot13 (9)

where 4 is element wise inequality, and 13 is the vector of all
ones. A similar G can be constructed for the N -dimensional
case. Let the i-th row of G be denoted as gi. Similarly, the l∞
constraint on a N -dimensional variables can be represented
using N inequalities:

‖I‖∞ ≤ Isafe (10)
⇒INI 4 Isafe1N , and INI < −Isafe1N (11)

where IN is the identity matrix of size N × N , and 1N is
the N -dimensional vector of all ones. Let the i-th row of IN
be denoted as ei. Before formulating the K.K.T. conditions,
let us write out (2) in the cannonical format:

I∗1 = arg min
I1

−AfI1 (12)

s.t ‖AcI1‖22 − α ≤ 0, GI1 − 2Itot12N 4 0

INI1 − Isafe1N 4 0 ,−INI1 − Isafe1N 4 0 (13)

1TNI1 = 0.

Therefore the Lagrangian for DCM can be written as:

L1 =−AfI1 + λ1
(
‖AcI1‖22 − α

)
+ µ1(1TNI1)+

2N∑
j=1

δ1j (gjI1 − 2Itot) +

N∑
j=1

ν1j (ejI1 − Isafe)+

N∑
j=1

κ1j (−ejI1 − Isafe) (14)

And we can find the optimal solution for the constrained
optimization of (2) by using the Lagrangian dual [20]:

I∗1 , λ
1∗, µ1∗, {δ1∗j }2

N

j=1, {ν1∗j , κ1∗j } = arg max
λ1≥0,µ1∈R,
{δ1j}

2N

j=1≥0,
{ν1

j ,κ
1
j}≥0

arg min
I1∈RN

L1

(15)

Since, the optimization formulation described in (2) is con-
vex, the solution of the Lagrangian can be found using
the K.K.T. conditions [20]. Therefore the solution of (15)
should satisfy its K.K.T. conditions (the first is a stationarity
condition, and the remaining are complementary-slackness
conditions):

∂L1

∂I1

∣∣∣∣
I1=I∗1

= −ATf + 2λ1∗ATf AfI
∗
1 + µ1∗1N +

2N∑
j=1

δ1∗j g
T
j +

N∑
j=1

(ν1∗j − κ1∗j )eTj = 0 (16)

λ1∗(‖AcI∗1‖22 − α) = 0 (17)

1TNI
∗
1 = 0 (18)

δ1∗(gjI
∗
1 − 2Itot) = 0 ∀ j ∈ {1, . . . , 2N} (19)

ν1∗j (ejI
∗
1 − Isafe) = 0 ∀ j ∈ {1, . . . , N} (20)

κ1∗j (−ejI∗1 − Isafe) = 0 ∀ j ∈ {1, . . . , N} (21)

Now, in the above system the solution λ1∗ = 0 corresponds
to I∗1 = 0, so it is not useful. So, for the rest of the proof, we
will assume that λ1∗ > 0. Now, writing the K.K.T. conditions
for (3) in exactly the same way as we did for (2). We first
write the corresponding Lagrangian for (3):

L2 =‖AcI2‖22 + β2 (AfI2 − Edes) + µ2(1TNI2)+

2N∑
j=1

δ2j (gjI2 − 2Itot) +

N∑
j=1

ν2j (ejI2 − Isafe)+

N∑
j=1

κ2j (−ejI2 − Isafe) (22)

Again, we can follow the same procedure for optimizing the
above Lagrangian to solve for (3)

I∗2 , β
2∗, µ2∗, {δ2∗j }2

N

j=1, {ν2∗j , κ2∗j } = arg max
β2,µ1∈R,
{δ2j}

2N

j=1≥0,
{ν2

j ,κ
2
j}≥0

arg min
I1∈RN

L2

(23)
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Again, the solution of (23) must satisfy its K.K.T. conditions,
which are:

∂L2

∂I2

∣∣∣∣
I2=I∗2

= β2∗ATf + 2ATf AfI
∗
2 + µ2∗1N +

2N∑
j=1

δ2∗j g
T
j +

N∑
j=1

(ν2∗j − κ2∗j )eTj = 0 (24)

AfI
∗
2 = Edes (25)

1TNI
∗
2 = 0 (26)

δ2∗(gjI
∗
2 − 2Itot) = 0 ∀ j ∈ {1, . . . , 2N} (27)

ν2∗j (ejI
∗
2 − Isafe) = 0 ∀ j ∈ {1, . . . , N} (28)

κ2∗j (−ejI∗2 − Isafe) = 0 ∀ j ∈ {1, . . . , N} (29)

Let us choose Edes = AfI
∗
1 , i.e. the current intensity we

found in the DCM optimization (15). Then, we make the
following substitution in the equations (24)-(29):

I∗2 = I∗1 , (30)

β2∗ = − 1

λ∗
, µ2∗ =

µ1∗

λ1∗
(31)

δ2∗j =
δ1∗

λ1∗
∀ j ∈ {1, . . . , 2N}, (32)

ν2∗j =
ν1∗

λ1∗
, κ2∗j =

κ1∗

λ1∗
∀ j ∈ {1, . . . , N} (33)

After making the substitutions, we see that

∂L2

∂I2

∣∣∣∣
I2=I∗1

=
1

λ1∗

(
−ATf + 2λ1∗ATf AfI

∗
1 + µ1∗1N︸ ︷︷ ︸

+

2N∑
j=1

δ1∗j g
T
j +

N∑
j=1

(ν1∗j − κ1∗j )eTj︸ ︷︷ ︸
=0 due to eq. (16)

 = 0 (34)

AfI
∗
1 = Edes = AfI

∗
1 (35)

1TNI
∗
1︸ ︷︷ ︸

=0 due to eq. (18)

= 0 (36)

1

λ1∗

δ1∗(gjI∗1 − 2Itot)︸ ︷︷ ︸
=0 due to eq. (19)

 = 0 ∀ j ∈ {1, . . . , 2N} (37)

1

λ1∗

ν1∗j (ejI
∗
1 − Isafe)︸ ︷︷ ︸

=0 due to eq. (20)

 = 0 ∀ j ∈ {1, . . . , N} (38)

1

λ1∗

κ1∗j (−ejI∗1 − Isafe)︸ ︷︷ ︸
=0 due to eq. (21)

 = 0 ∀ j ∈ {1, . . . , N} (39)

Therefore the values of {I∗2 , β2∗, µ2∗, {δ2∗j }2
N

j=1, {ν2∗j , κ2∗j }}
given by (30)-(33) satisfy the K.K.T. conditions of (19),
thereby are also the solution of (23). Hence, the optimal
I we found for both (3) and (2) are the same by the virtue
of (30). Therefore we can find solutions of (3) and (2) and
vice versa by choosing either Edes = AfI

∗
1 or α = ‖AcI∗2‖22.
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