
  

Abstract— Studies have shown that medial prefrontal cortex 
(mPFC) is responsible for outcome evaluation. Some recent 
studies also suggest that mPFC may play an important role in 
goal planning and action execution when performing a task. If 
the information encoded in mPFC can be accurately extracted 
and identified, it can improve the design of brain-machine 
interfaces by better reconstructing subjects’ motion intention 
guided by reward information. In this paper, we investigate 
whether mPFC neural signals simultaneously encode 
information of goal planning, action execution and outcome 
evaluation. Linear-nonlinear-Poisson (LNP) model is applied for 
encoding analysis on mPFC neural spike data when a rat is 

learning a two-lever-press discrimination task. We use the 𝑳𝟐-
norm of tuning parameter in LNP model to indicate the 
importance of the encoded information and compare the spike 
train prediction performance of LNP model using all 
information, the most significant information and reward 
information only. The preliminary results indicate that mPFC 
activity can encode simultaneously the information of goal 
planning, action execution and outcome evaluation and that all 
the relevant information could be reconstructed from mPFC 
spike trains on a single trial basis. 

Keywords— brain machine interface, medial prefrontal 

cortex, neural encoding 

 

I. INTRODUCTION 

Brain-machine interface (BMI) technology [1] builds the 
communication pathway between brains and external devices. 
BMIs generally collect neural activities from motor cortical 
areas and translate them into motion intentions, which enable 
people with disabilities to control a neural prosthesis. Existing 
BMIs were designed to execute pre-defined tasks and have 
difficulty in adapting to a new task. To enable the neural 
prosthesis to learn a new task, it is important to study the task 
learning mechanism in brains and utilize it to improve the BMI 
design. 

A wealth of studies [2]–[4] have suggested that the medial 
prefrontal cortex (mPFC), especially the anterior cingulate 
cortex (ACC), is critically involved in reward-guided learning. 
However, how mPFC functions in the learning process 
remains in dispute.  The most widely accepted point of view is 
that mPFC is responsible for outcome evaluation. The 
predicted response outcome (PRO) model [5] and reward 
value and prediction model (RVPM) [6] addressed the role of 
mPFC in detecting discrepancies between actual and intended 
outcome. On the other hand, some recent studies suggest that 
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mPFC may also play an important role in goal planning and 
action execution when performing a task. Holroyd et al. [7] 
proposed that mPFC gives the goal and plan at the beginning 
of the task and monitors the movement execution during the 
task. Shenhav et al. [8] proposed that mPFC integrates a 
variety of signals (including expected reward, costs, effort and 
so on) to determine whether, where and how much control to 
allocate during the task.  

The accurate extraction of the mPFC encoding information 
can help the better reconstruction of subjects’ motion intention 
during task learning. Previous study has used the reward 
information encoded in mPFC to improve the design of BMIs 
towards autonomous system. Shen et al. [9] proposed an 
internally rewarded reinforcement learning-based BMI 
decoder which extracted reward information from mPFC 
spikes and guided the choice of the movement. The proposed 
decoder in [9] has the advantage of autonomous task learning 
ability compared with traditional BMI designs. However, the 
information of goal planning and action execution encoded in 
mPFC has not been investigated on the single trial basis, which 
is particularly important for online BMI decoding during task 
learning. 

In this paper, we are interested in investigating whether 
mPFC neural signals simultaneously encode information for 
goal planning, action execution and outcome evaluation. We 
perform multivariate encoding analysis using rat data, while a 
male Sprague Dawley (SD) rat was trained to learn a two-
lever-press discrimination task according to audio cues. Neural 
signals of 16 channels from mPFC were collected during the 
task learning. Four kinds of information including start cue, 
movement preparation, movement execution and reward 
information are extracted from behavioral data and mapped 
into an eight-dimensional vector for encoding analysis. The 
linear-nonlinear-Poisson (LNP) model is applied to map the 
high dimensional information into spike trains of mPFC 
neurons. The 𝐿2-norm of tuning parameter in LNP model is 
used to evaluate the importance of encoded information. In 
order to verify if mPFC activity encodes multiple information 
simultaneously. We compare the spike train prediction 
performance of LNP model that takes in 3 types of inputs 
including all information, the most significant information and 
only the reward information to see if mPFC encode multiple 
information simultaneously. Kalman filter is applied to verify 
whether the kinematics related to movement preparation, 
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movement execution and reward information can be 
reconstructed from mPFC spike trains on a single trial basis.  

 The rest of this paper is organized as follows: Section II 
shows the detailed experiment design, data collection and 
preprocessing methods, mPFC neural encoding analysis and 
decoding evaluation. Section III shows the results of encoding 
comparison and decoding evaluation. Section IV gives the 
conclusions and future work. 

II. METHOD 

A. Behavioral Experiment Design and Data Preprocessing 

All animal handling procedures and BMI experiments in 
this paper were conducted with approval from the Animal 
Ethics Committee at HKUST. Six male Sprague Dawley (SD) 
rats were first well trained on a one-lever-press task and then 
started to learn to perform a two-lever-press discrimination 
task. Each trial of the task was initialized by an audio cue 
(lasting 900ms) of either a high pitch (10kHz) or low pitch 
(1.5kHz), which was randomly generated. The rat needed to 
press the high lever when hearing the high-pitched cue and 
press the low lever when hearing the low-pitched cue. If the 
lever was correctly pressed within 5s after the start cue and 
held for 500ms, a feedback cue (lasting 90ms) with the same 
pitch would be presented and the subject would be rewarded 
with a water drop. Wrong pressing, early releasing and 
omission all led to an unsuccessful trial and the rat would 
neither hear the feedback cue nor get water reward. The inter-
trial interval was set to be a random value ranging from 3 to 
6s. 

Two 16-channel microelectrode arrays were chronically 
implanted in the M1 and mPFC areas to record neural signals. 
Data acquisition and storage were accomplished by the neural 
recording system (Plexon Inc, Dallas, Texas). Here, we only 
use the data sampled from the region of mPFC. The raw signal 
was sampled at 40 kHz and digitally filtered using a 500 Hz 
four-pole high-pass Butterworth filter. The spikes were 
detected from the filtered waveforms with a -4σ threshold, 
where σ was the standard deviation of the histogram of the 
amplitudes. The offline sorter (Plexon Inc, Dallas, Texas) was 
utilized to sort the single neuron from each channel and the 
spike timing information was restored. Meanwhile, all the 
behavior events and their timings including the trial start cue 
presenting, lever pressing, lever releasing, feedback cue 
presenting were recorded by the behavior recording system 
(Lafayette Instrument, USA) and synchronized with the 
aforementioned neural recording system. All the time series 
were discretized with a resolution of 10ms. Here we use the 
data collected from one rat. With this 10ms bin size, 91.2% of 
the intervals with spikes had only a single spike. We selected 
the day when the success ratio of the rat showed a great 
improvement during the task learning procedure. On the 
selected day, there were a considerable number of successful 
and unsuccessful trials (we only use wrong pressing trials as 
unsuccessful cases), which are respectively 216 and 116. 

To investigate what information mPFC activity encodes, 
we extract information for goal planning, action execution and 
outcome evaluation from behavioral events. Applying the 
similar methods of [10], we map discrete events data to 
continuous values in [-1,1] to represent the information 

including position, velocity, start cue and reward information. 
Fig. 1 shows the mapping results of four kinds of information. 
For each kind of information, we use a two-dimensional 
variable to describe how it changes over time. For example, 
we use 𝑃𝑥 and 𝑃𝑦 to represent position information, where the 

rest stage is set as [0,0] and holding low lever and high lever 
are set as [1, -1] and [1,1]. The different stages are connected 
smoothly with sigmoid function [10], as shown in Fig. 1(a). 
The velocity is obtained as the first derivative information of 
position and normalized within [-1,1], as shown in Fig. 1(b). 
The start cues of low and high pitch are set as [1, -1] and [1,1]. 
The reward presenting and no presenting are set as [1,0] and 
[0,1]. The state labels of start cue and reward information are 
obtained by Gaussian smoothing. Therefore, we have a total of 
eight variables served as the input of the encoding algorithm 
— 𝑃𝑥 , 𝑃𝑦 , 𝑉𝑥 , 𝑉𝑦 , 𝐶𝑥, 𝐶𝑦 , 𝑅𝑥, 𝑅𝑦.  

 

Fig. 1 The state label of (a) position (b) velocity (c) start cue (d) reward  

B. Multivariate Encoding Analysis of mPFC spike trains 

In this paper, we apply the linear-nonlinear-Poisson (LNP) 
model to conduct the encoding analysis and compare the spike 
prediction performance using different information inputs. 
The linear-nonlinear-Poisson (LNP) model [11] is able to 
relate the mPFC neural activities to high-dimensional 
information they may encode. Compared with other encoding 
models which use linear, exponential or Gaussian tuning 
function, LNP model builds the tuning characteristic of each 
single neuron without any prior assumption on the tuning 
properties [12]. As shown in Fig. 2, LNP model consists of 
three parts, including a linear filter, a nonlinear function and a 
Poisson model. 

 

Fig. 2 The block diagram of the Linear-Nonlinear-Poisson model 

The input 𝒙𝑡 = [𝑃𝑥 , 𝑃𝑦 , 𝑉𝑥 , 𝑉𝑦 , 𝐶𝑥 , 𝐶𝑦, 𝑅𝑥 , 𝑅𝑦]𝑡  is a multi-

dimensional encoding information vector sampled within a 
time window of [-150,150] ms centered at each time instance 
𝑡 . Firstly, the input vector 𝒙𝑡  is optimally projected into a 
scalar y by a linear filter, where the tuning parameter 𝒌 
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(representing a preferred direction in hyperspace) is estimated 
by spike-triggered regression [10]: 

                     𝒌 = (𝐸[𝒙𝑡𝒙𝑡
𝑇 + 𝜂𝑰])−1𝐸𝒙𝑡|𝑠𝑝𝑖𝑘𝑒[𝒙𝑡] (1.) 

where 𝐸[𝒙𝑤𝑖𝑛𝒙𝑤𝑖𝑛
𝑇 ]  represents the autocorrelation of input 

vector and 𝐸𝒙𝑤𝑖𝑛|𝑠𝑝𝑖𝑘𝑒[𝒙𝑤𝑖𝑛] is the cross-correlation between 

the input and the binary spike observation. 𝜂 is a regularization 
factor for avoiding ill-conditioning in the inverse computation. 
Then the produced scaler 𝑦 = 𝒌𝑇𝒙𝑡  is converted by the 
nonlinear function 𝑓(𝑦)  estimated from the conditional 
probability density 𝑝(𝑠𝑝𝑘|y)  which implements the Bayes 
rule, 

     𝑓(𝑦) = 𝑝(𝑠𝑝𝑘|𝑦) =
𝑝(𝑠𝑝𝑘,𝑦)

𝑝(𝑦)
(2.)                    

where joint distribution 𝑝(𝑠𝑝𝑘, 𝑦)  and the corresponding 
marginal 𝑝(y)  are estimated by kernel density estimation 
using a Gaussian kernel. After estimating the two distributions 
from the training set and calculating the nonlinear function for 
every neuron, we can obtain the instantaneous firing rate 𝜆𝑡 of 
the Poisson model from the output of 𝑓(𝑦)  and finally 
establish a mapping from the multi-dimensional information 
vector to the spike trains of mPFC. 

To investigate whether the ensemble of mPFC neurons 
encode all the information as the input of LNP model, we 
examine the 𝒌 of each neuron and calculate their 𝐿2-norm of 
position 𝒌𝑝 , velocity 𝒌𝑣 , cue 𝒌𝑐  and reward 𝒌𝑟  individually, 

which represents the correlation with spike trains. For each 
neuron, we choose the input with the largest 𝑙2-norm as one 
with the most significant information. 

                    𝑖∗ = arg max
𝑖

(‖𝒌𝑖‖2), 𝑖 = 1,2,3,4  (3.)                              

Here 𝒌𝑝, 𝒌𝑣, 𝒌𝑐 , 𝒌𝑟  are indexed by 𝒌1, 𝒌2, 𝒌3, 𝒌4 and 𝑖∗ is the 

index of the most significant information. After obtaining the 

most significant information， we compare the encoding 

performance under inputs with all information， the most 

significant information only，reward information only to see 

whether the neuron encode multiple information 
simultaneously. 

C. Reconstruct kinematics and reward information  

Here, the Kalman filter decoder [12] is utilized to verify 
whether the movement preparation, movement execution as 
well as reward information can be reconstructed from mPFC 
spike trains on a single trial basis.  

In our approach, 𝒙𝑡 = [𝑃𝑥 , 𝑃𝑦 , 𝑉𝑥 , 𝑉𝑦 , 𝐶𝑥, 𝐶𝑦 , 𝑅𝑥, 𝑅𝑦]𝑡
𝑇  is 

defined as the state variables described in section II A, and 𝒛𝑡 
is defined as the neural activity observation, where 𝒛𝑡  is a 
64 × 1  vector which contains the firing rates counted in 
100ms time window of 16 channels, and each channel consists 
of current firing and 300ms historical firing. A detailed 
description of the Kalman filter configuration can be seen in 
[12]. We divide the original data into training set (75%) and 
testing set (25%). The training data is used to obtain the 
parameters of the Kalman filter, including state transition 
matrix, measurement matrix and noise covariance matrix. 
Here, the correlation coefficient is calculated to evaluate the 
decoding performance by comparing reconstruction states 
with the ground truth.  

III. RESULT 

In this section, we first present the selection on the most 
significant using 𝑙2-norm of tuning parameter. Then we show 
the spike prediction result of LNP model on one neuron as an 
example and compare the encoding performance using high 
dimensional input, the input with most encoded information, 
as well as the reward information. Finally, we show the 
decoding results using Kalman filter.  

We use mutual information to select the neurons which are 
most related to collected behavioral events [12]. After sorting 
the mutual information of all 18 mPFC neurons by descending 
order, we choose the top 10 neurons for encoding analysis. The 
𝐿2-norm of each tuning parameter is shown in Fig 3. Here we 
present three typical neurons in mPFC. For example, the  𝐿2-
norm of 𝒌𝑝 (blue bar) and 𝒌𝒗 (orange bar) of neuron 15 are 

larger than the 𝐿2-norm of 𝒌𝑐  (green bar) and 𝒌𝑟  (gray bar), 
which indicates this neuron is mainly involved in motor 
control (action execution). Similarly, we can infer that the 
major information encoded by neuron 16 and 14 is 
respectively start cue (goal planning) and reward (outcome 
evaluation) information. These results provide preliminary 
evidence that mPFC neuron ensemble can encode all the 
aforementioned information simultaneously.  

 

Fig. 3 The 𝐿2-norm of tuning parameter of neuron 15, 16 and 14  

The 𝑙2-norm of tuning parameter is then used to determine 
the most significant information for each neuron. Fig. 4(a) 
shows a segment of the spike prediction of the neuron 12. The 
events labelled on the top include start cue presenting (blue), 
pressing (green) and reward presenting (purple). The gray bar 
represents the actual spike trains. The red thick line represents 
the firing rate estimated by smoothing the spike trains using 
Gaussian kernel. The blue, black and green dashed line 
represents firing rates predicted by the LNP model with all 
information, most significant information (position 
information for neuron 12) and reward information, 
respectively. We can see that the firing rates predicted by LNP 
model with all information are the closest to the ground truth. 
The prediction performance with the most significant 
information is worse than that with all information and better 
than that with reward information only. We calculate the 
correlation coefficient between actual spikes and the predicted 
firing probability using three different inputs. The correlation 
coefficient values averaged on 10 neurons are 0.61, 0.52 and 
0.35 for LNP model with all information, the most significant 
information and reward information. We also employ 
Kolmogorov-Smirnov test (more details about KS-test can be 
seen in [10]) to evaluate how the prediction agrees with the 
observed spike 
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Fig. 4 Encoding analysis of neuron 12 (a) The spike prediction using different inputs (b) KS-test results using different inputs 

train. As shown in Fig. 4(b), the KS statistics (neuron 12) of 
LNP model with all information, the most significant 
information, reward information are displayed by blue, black 
and green line respectively, and the 95% confidence interval is 
plotted by red dash line. We can observe only blue line keeps 
in the confidence range, which demonstrate that the prediction 
from LNP model with all information is closer to the real 
observation than other two predictions. All the above results, 
including correlation coefficient values and KS-test, 
demonstrate that mPFC activity may encode information for 
goal planning, action execution and outcome evaluation 
simultaneously.  

Fig. 5 shows a segment of the decoding results, where we 
reconstruct position, velocity, cue and reward information 
simultaneously from mPFC activity. In Fig. 5(a)-(d), the 
desired signals (red thick line) of 𝑃𝑥 , 𝑉𝑥 , 𝐶𝑥, 𝑅𝑥 are compared 
with the estimation (blue dash line) using Kalman filter. We 
can clearly see that all the estimation follows the change of 
desired signals well almost in every trial. We further perform 
the decoding on 10 segments of data, each contains 250 data 
samples. For position, velocity, start cue and reward 
information, the averaged correlation coefficients between the 
desired signal and estimation are 0.82, 0.76, 0.61 and 0.53. The 
decoding results show that the movement preparation, 
executed kinematics and reward information can be well 
reconstructed from mPFC neural signals. 

 

Fig. 5 Decoding results of kinematics and reward information 

IV. CONCLUSION AND DISCUSSION 

In this paper, we investigate whether mPFC neural spikes 
simultaneously encode information of goal planning, action 
execution and outcome evaluation. Four kinds of information 
including position, velocity, start cue and reward information 
are served as high dimensional input of the LNP encoding 

model. The LNP mode that takes in all information can 
achieve the most satisfactory spike prediction performance. 
Four kinds of information can be well reconstructed by 
Kalman decoder at the same time with high correlation 
coefficients. These results indicate that mPFC activity may 
simultaneously encodes goal planning, action execution and 
outcome evaluation and that all the relevant information can 
be reconstructed from mPFC spike trains on a single trial basis. 
In the future work, we plan to explore more subjects and utilize 
the information from mPFC to improve the decoding 
performance of BMIs.  
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