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Abstract— Quantitative analysis of dynamic contrast-

enhanced cardiovascular MRI (cMRI) datasets enables the 

assessment of myocardial blood flow (MBF) for objective 

evaluation of ischemic heart disease in patients with suspected 

coronary artery disease. State-of-the-art MBF quantification 

techniques use constrained deconvolution and are highly 

sensitive to noise and motion-induced errors, which can lead to 

unreliable outcomes in the setting of high-resolution MBF 

mapping. To overcome these limitations, recent iterative 

approaches incorporate spatial-smoothness constraints to tackle 

pixel-wise MBF mapping. However, such iterative methods 

require a computational time of up to 30 minutes per acquired 

myocardial slice, which is a major practical limitation. 

Furthermore, they cannot enforce robustness to residual 

nonrigid motion which can occur in clinical stress/rest studies of 

patients with arrhythmia. We present a non-iterative patch-wise 

deep learning approach for pixel-wise MBF quantification 

wherein local spatio-temporal features are learned from a large 

dataset of myocardial patches acquired in clinical stress/rest 

cMRI studies.  Our approach is scanner-independent, 

computationally efficient, robust to noise, and has the unique 

feature of robustness to motion-induced errors. Numerical and 

experimental results obtained using real patient data 

demonstrate the effectiveness of our approach. 

 
Clinical Relevance— The proposed patch-wise deep learning 

approach significantly improves the reliability of high-resolution 

myocardial blood flow quantification in cMRI by improving its 

robustness to noise and nonrigid myocardial motion and is up to 

300-fold faster than state-of-the-art iterative approaches. 

I. INTRODUCTION 

Dynamic contrast-enhanced cardiovascular MRI (cMRI) is 
an attractive alternative to nuclear imaging for evaluation of 
myocardial perfusion as it avoids exposure to ionizing 
radiation and provides higher resolution images allowing for 
greater sensitivity for detection of ischemic heart disease [1]. 
However, the state-of-the-art perfusion cMRI protocols are 
challenging since they require quantification of absolute 
myocardial blood flow (MBF) to objectively assess the disease 
burden. To quantify MBF, time-intensity curves are extracted 
from dynamic contrast-enhanced cMRI images and are used in 
a nonlinear fitting process [1-5]. In the setting of high-
resolution pixel-wise MBF quantification, the resulting maps 
are highly sensitive to noise and motion-induced errors. In fact,  
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conventional deconvolution-based quantification may yield 
unreliable MBF values in real-world patient studies where the 
image quality is often subpar in the setting of vasodilator-stress 
cMRI exams. Recently various groups have addressed this 
problem by using Tikhonov regularization or Bayesian 
inference [6, 7] to incorporate prior knowledge in form of 
spatial/smoothness constraints based on neighboring-pixel 
similarity in the unknown MBF maps. Such approaches 
significantly improve the resulting “noise level” in the 
estimated MBF map but with the practically-important 
tradeoff of requiring up to 30 minutes per slice due to the need 
for employing iterative algorithms [6]. Furthermore, such 
methods cannot enforce robustness to residual nonrigid motion 
which can occur in clinical stress/rest studies of patients with 
arrhythmia. While several deep learning approaches have been 
proposed and successfully applied to myocardial segmentation 
[3, 4, 8], the quantification of MBF still relies on these iterative 
solutions of physical and mathematical models. This poses a 
bottleneck for the full automation of quantitative analysis of 
perfusion cMRI datasets.   

Herein, we present a new end-to-end patch-wise deep 
learning approach that enables fast and reliable quantification 
of MBF maps (computational time < 2 seconds per slice). Our 
proposed approach utilizes a multi-stage neural network 
architecture trained to quantify pixel-wise MBF values by 
incorporating information from a patch of neighboring pixels. 
Furthermore, our approach offers the unique feature of 
robustness to motion-induced errors, which is achieved in a 
data-driven manner through extensive data augmentation. Our 
training dataset was acquired using two different scanners 
from two medical centers. Our testing dataset includes images 
acquired using an additional scanner that was not involved in 
training. Experimental results obtained with numerical 
phantoms as well as clinical cMRI patient data demonstrate the 
effectiveness of our approach in the setting of high-resolution 
MBF mapping. 

II. METHODS 

A. Training/Testing Dataset and cMRI protocol 

Stress/rest perfusion images from 180 volunteer patients 
who underwent vasodilator stress cMRI exam for evaluation 
of suspected ischemic heart disease were analyzed. Data was 
acquired using  three  different  3T  MRI  scanners  from  two 
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Figure 1.  Processing pipeline. (A) Patch-wise end-to-end deep-learning approach for quantification of myocardial blood flow from first-pass perfusion cMRI 
datasets, without the need for using iterative data-fitting. (B) Illustration of the patch extraction step. Each patch (2D+time) contains time curves corresponding 
to one pixel (patch center) and its eight neighboring pixels. Herein, the input to our end-to-end deep learning system is a perfusion image series. The myocardium 
and blood pool pixels are identified in each frame using the segmentation module. The arterial input function curve (AIF) is generated using the blood pool pixels 
and is used by the temporal localizer module to locate the first and last frames of the AIF first-pass. The image series is converted into overlapping spatiotemporal 
patches each containing the time curves of a center pixel and its neighboring pixels. The time curves in addition to the time stamps are resampled into a fixed 
length and processed by the quantifier deep learning module which evaluates the blood flow value in the center pixel of the spatiotemporal patch. All slice patches 
are processed simultaneously in a fast vectorized manner. 

different medical centers. For all of the volunteer and patient 
imaging studies, local Institutional Review Board (IRB) 
approval and written informed consent was obtained before 
each imaging exam/study. Data from one of the three scanners 
was not included in the training data and was only used for 
further testing of the generalizability of our approach in the 
testing stage. It is worth mentioning that the total number of 
images in our training dataset was over 50,000 since each 
patient study for a complete stress/rest dynamic contrast-
enhanced cMRI exam yields over 300 time-resolved images. 
Our training data augmentation utilized an additional publicly 
available dataset of 1500 AIF time-curves [9] and, thanks our 
proposed patch-wise deep learning approach, a total of 10 
million training samples were generated as described in 
Section II.D below.  

All subjects underwent high-resolution free-breathing 
vasodilator-stress cMRI at 3T using two different pulse 
sequences: either saturation-recovery spoiled gradient-
recalled echo with in-plane resolution of 1.6 x 1.6 mm2 or 
saturation-recovery balanced steady-state free precession with 
in-plane resolution of 1.9 x 1.9 mm2). Data was acquired over 
48-60 heartbeats in 3 short-axis slices with a slice thickness of 
8 mm [10].  

B. Processing Pipeline 

Our data-driven approach comprises multiple deep 
learning modules each specializing in a specific task and 
incorporates spatial information wherein neighboring pixels 
contribute to the estimation of myocardial blood flow. The 
processing pipeline is illustrated in Fig. 1. The input to our 

end-to-end deep learning system is a perfusion image series. A 
segmentation deep learning module developed by our group in 
previous work [11,12] is used to identify the myocardium and 
blood pool pixels in each frame in order to extract the 
myocardial and AIF time curves [1]. 

A temporal localizer deep learning module is trained to 
determine the temporal locations of the first and last frames in 
the first-pass of the AIF time-curve. Only the first-pass frames 
of the image series are included from this point forward. All 
time curves are normalized by subtracting the base line and 
dividing by the area under the curve of the AIF first-pass. 

The image series is converted into overlapping spatio-
temporal patches (2D + time) each containing the time curves 
of a center pixel and its neighboring pixels. The time curves 
are resampled into a fixed length, and together with the time 
stamps serve as the input of the quantifier deep learning 
module which is trained to evaluate the blood flow value in the 
center pixel of the spatiotemporal patch. All patches of a slice 
are processed simultaneously in a fast vectorized manner 
yielding a pixel-wise blood flow map as the final output. 

C. Deep Learning Approach 

The deep learning modules in our approach utilize the 
multi-stage training technique (MST). MST was originally 
designed for high-fidelity denoising of MRI data with non-
additive noise [13, 14]. It is a highly distributable structure-
parallel deep learning approach typically comprising a system 
of hundreds of small networks, each specializing in a partial 
solution of the problem at hand. This allows efficient 
utilization of Newton based second-order optimization which 
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offers several advantages in robustness to hyper parameters, 
accuracy, convergence speed and efficiency [15-21].  

A detailed description of MST implementation is presented 
in [22, 23]. Training is performed in multiple stages, where 
each stage consists of multiple neural networks. The 
hierarchical strategy drastically increases the efficiency of 
training. The burden of reaching a more global solution of a 
complex model that can perform well on all variations of input 
data is divided into multiple simpler models such that each 
simple model performs well only on a subset of the data. Using 
subsequent stages, the area of specialization of each model is 
gradually broadened. The process of reaching a more global 
minimum becomes more feasible at subsequent stages, since 
models search for combinations of partial solutions of the 
problem rather than directly finding a complete solution using 
the original data.  

Additionally, the multistage approach allows “very early 
stopping'' [24] at each individual stage where the target error 
is gradually reduced in subsequent stages. By systematically 
assigning specific stopping criteria to each stage, we gain a 
level of control over how fast the overall system fits the data, 
yielding a better overall performance and generalization. For 
example, an MST can be designed with few stages where a 
small error is chosen as a stopping criterion in the first stage 
and is drastically decreased at successive stages. Alternatively, 
a larger target error can be chosen and slowly decreased over 
more stages depending on the complexity of the problem. This 
data-driven regularization is highly effective and yields a 
minimal error at the final stage while minimizing the risk of 
over-fitting. 

The MST used for the temporal localizer module is 
illustrated in Fig. 2(A), and the MST used for the quantifier 
module is illustrated in Fig. 2(B). Using a Titan W375 
workstation with dual AMD EPYC Rome 96 core/192 thread 
CPU, the time required for training the modules was 
approximately 20 hours.  

D. Training Data Augmentation 

A time curve extracted from a 48-frame perfusion image 

series can be defined by a vector: 

 

C = {c_1, c_2, c_3, … c_46, c_47, c_48} 

 

where c_i is the curve value at frame i. Let C ̃ be the result of 

modifying C after an augmentation process. The 

augmentation types used are defined in Table I. The training 

data of the temporal localizer module was augmented by 

adding synthetic noise and shifts as illustrated in Fig. 3. For 

the quantifier module, robustness to noise and motion induced 

artifacts were achieved through meticulous data 

augmentation. The perfusion image series in the training 

dataset were heavily denoised, and conventional analysis was 

performed using Fermi-constrained deconvolution of the 

time-curves to obtain the ground truth labels. 

The data was then augmented by systematically adding 

different levels of synthetic noise to the denoised images, as 

well as simulated motion errors which manifest as spike noise 

in the tissue time-curves [25]. Shifts were also added to the 

myo-patch time curves as illustrated in Fig. 4. A total of 10 

million training samples were generated and used for training  

our  quantifier  deep learning  module, which  was optimized 

to estimate the ground truth labels of the denoised images 

even when it receives the synthetically distorted images as an 

input. 
Figure 2.  Proposed multi-stage training technique (MST) architecture for 

the deep-learning modules. (A) Illustration of the temporal localizer 
architecture. Stage 1 is a convolutional front-end consisting of 8 convolutional 
neural networks (CNNs). The task for each CNN is to perform temporal 
localization, i.e. to estimate the start/end truncation indices for the first-pass in 
the AIF time-curve. Each CNN outputs two real-valued scalars (regressed time 
indices). The outputs from the 8 CNNs in Stage 1 are concatenated into a 16x1 
vector and this forms the input for Stage 2, which consists of 20 fully 
connected networks (FCNs). The estimation of start/end indices are refined in 
the subsequent two stages (Stage 2 and Stage 3). Each of the 20 FCNs in Stage 
2 produces 2 outputs which are concatenated into a 40x1 vector to form the 
input to Stage 3. At the output of Stage 3, the first/second outputs from all 
FCNs are averaged and rounded to obtain the start/end index for the AIF time-
curve. The progression of a sample input pixel is demonstrated. The input 
corresponding to one pixel (an AIF curve) is shown. A gray-scale image 
corresponding to the input is shown as well. The output of each stage is shown 
as a gray scale image. The estimated locations of the start/end points are shown 
at the output. (B) Illustration of the quantifier architecture. The mechanism 
here is similar to the temporal localizer. The input to this module is a (2D + 
time) patch. The output of this module is a blood flow value corresponding to 
the pixel in the patch center. The input to the first stage also includes the 
arterial input function and time stamps corresponding to the pixels included in 
the patch (omitted in the figure for visual clarity). The progression of a sample 
input patch is demonstrated. The output of each stage is shown as a gray scale 
image. The final stage FCN outputs are averaged to obtain the MBF value. 

TABLE I.  AUGMENTATION TYPES 

Type Description 

(I) 1 frame left:      𝐶̃ = {𝑐2, 𝑐3, 𝑐4, … 𝑐47, 𝑐48, 𝑐48} 
(I) 2 frames left:    𝐶̃ =  {𝑐3, 𝑐4, 𝑐5, … 𝑐48, 𝑐48, 𝑐48}  
(I) 1 frame right:   𝐶̃ = {0, 𝑐1, 𝑐2, … 𝑐45, 𝑐46, 𝑐47} 
(I) 2 frames right: 𝐶̃ = {0,0, 𝑐1, … 𝑐44, 𝑐45, 𝑐46} 
(II) 𝐶̃ =  𝐶 ± 𝑜𝑓𝑓𝑠𝑒𝑡, a small scalar within 3% of the 

curve’s peak. 
(III) 𝐶̃ =  𝐶 + 𝑛𝑜𝑖𝑠𝑒, a vector of gaussian noise with 

the same size as 𝐶. 

(IV) 𝐶̃ =  𝐶 + 𝑠𝑝𝑖𝑘𝑒, a vector of spike noise with the 
same size as 𝐶. 

(V) 𝐶̃ =  𝐶 × 𝑠, a scalar value between 0.8 and 1.2 
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Figure 3. Training data augmentation for the temporal localizer module. 
AIFs were extracted from patient data and the first and last frame locations of 
the first-pass (foot and valley) were manually labeled to obtain the ground 
truth. The AIFs are normalized by subtracting the baseline and dividing by the 
AIF average peak value. The data was augmented by randomly shifting the 
AIFs and adding noise. Hundreds of random realizations were created for each 
AIF in order to obtain robustness to noise as well as base line.  

 

Figure 4. Training data augmentation for the quantifier module. AIFs and 
myo-patches of time curves extracted from patient data were placed in separate 
sets. For each training sample, a combination of an AIF and a myo-patch are 
randomly selected. The myo-patch time curves are randomly shifted left/right 
and up/down, randomly scaled and contaminated with noise. Spike noise is 
added to some of the samples to simulate motion induced errors. Gaussian 
noise is also added to the AIF curve. The curves are truncated to the first pass 
using the temporal localizer module and normalized by subtracting the base 
line and dividing by the AIF first-pass area under the curve. Time stamps are 
randomly generated based on the range of time durations calculated from our 
patient dataset. Ground truth labels for each sample were generated using 
Fermi deconvolution prior to applying the augmentation processes. Samples 
with a fitting error larger than 20% were considered infeasible and were 
discarded. A total of 10 million training samples were generated and used for 
training our quantifier deep learning module. 

III. RESULTS 

We validated our approach by comparing it to the 
established (conventional) approach for MBF quantification, 
i.e., Fermi-constrained deconvolution [1], through an array of 
experiments that included real-world clinical patient data as 
well as numerical phantoms wherein the exact ground truth is 
known. 

A.  Numerical Experiments 

In the first set of experiments, we evaluated the effect of 
SNR degradation in synthetic data (realistic time-curves 
generated based on the approach in Section II). As shown in 
Fig. 5, in high-SNR regime the performance of our proposed 
patch-wise deep learning is similar to the conventional 
constrained deconvolution approach. However, our proposed 
method clearly outperforms the conventional approach as SNR 
degrades to the realistic levels seen in clinical datasets (below 
20 dB). As shown in Fig. 5, we used two different metrics 

following the approach described in [26]. Further details are 
provided in the caption of Fig. 5.   

Next, we evaluated the level of robustness our proposed 
method to residual myocardial motion (errors induced by 
nonrigid motion) as described in Fig 6, in addition to  random 
noise as described in Fig. 7. A consistent behavior can be 
observed in both Figs. 6 and 7: our proposed deep-learning 
approach is capable of “seeing through” the motion errors and 
random noise, while the conventional approach tends to 
overestimate MBF values in presence of such motion- or 
noise-induced time-curve errors. These experiments confirm 
the ability of our approach to maintain a steadier performance 
in practical clinical scenarios where the image quality (level of 
noise and cardiac motion) can vary significantly from patient 
to patient, or from one medical center to another.  It is worth 
noting that the behavior of the conventional (constrained 
deconvolution) approach was consistent with previous work 
[27], where it has been shown that MBF values tend to be 
overestimated with lower image quality. 

Figure 5. Comparison of noise effect on performance for our deep 

learning approach and Fermi constrained deconvolution. FCD: Fermi 

Constrained Deconvolution. DL: Patch-wise end-to-end deep learning. Two 

accuracy metrics are used: (A) Coefficient of repeatability, and (B) 

Normalized Root Mean Square Error. Each datapoint was evaluated using 
hundreds of synthetic time curves with known ground truths, with a total of 

30 random noise realizations applied to each curve. Both metrics reveal a 

steadier performance for our approach under low SNR as compared to the 
conventional approach.  

B. Clinical Patient Studies 

For our in-vivo tests, dynamic contrast-enhanced cMRI 

data from a total of 29 patients from two different medical 

centers were analyzed. None of the patients used in the 

analysis were included in the training dataset. As described in 

Fig. 8, our results show a high level of agreement versus the 

conventional Fermi-constrained deconvolution technique for 

MBF quantification when the goal is relaxed to estimating the 

mean MBF value for each myocardial slice or myocardial 

segment (effectively “averaging out” some of the noise-

induced errors in the deconvolution process). High agreement 

between our approach and the conventional method on 

average MBF values per slice and per segment is observed 

through Bland-Altman analysis shown in Fig. 8(A), slice-

averaged MBF correlation (R2 > 0.9, p < 10-4), and American 

Heart Association (AHA) 6-segment model MBF correlation 

(R2 > 0.9, p < 10-4). However, as demonstrated in Fig. 8(B), 

the level of agreement between the two methods deteriorates 

as the number of myocardial sectors (sub-divisions of each 

myocardial segment) is increased due to the poor robustness 

of the conventional method in the high-resolution setting to 

noise/motion effects.  
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Figure 6. Demonstration of robustness to motion-induced errors in a numerical phantom. FCD: Fermi Constrained Deconvolution. PW-DL: Patch wise 

end to end Deep Learning. S1/S2: Sample time curves extracted from the regions indicated by the white arrows. (A) Results corresponding to the original 
phantom. (B) Results when a motion-induced error occurs in the upslope. (C) Results when a motion-induced error occurs in the downslope. (D) Result when 

a motion-induced error occurs both in the upslope and downslope. (E) Results when a motion-induced error occurs both in the upslope and downslope and 

moderate noise is added. Our method exhibits robustness to motion errors, while the conventional approach produces erroneous results that can lead to 
misdiagnosis. 

Figure 7. Demonstration of robustness to noise in a numerical phantom. FCD: Fermi Constrained Deconvolution. PW-DL: Patch wise end to end Deep 
Learning. S1/S2: Sample time curves extracted from the regions indicated by the white arrows. (A) Results corresponding to the original phantom. (B-E) 

Results when different levels of synthetic noise are added. Noise levels increase from left to right. Our methods exhibit graceful degradation with decreasing 

SNR, while the conventional approach performance deteriorates.

Finally, in Fig 9 we have shown a representative patient 

study (cMRI with vasodilator stress) in which the MBF maps 

generated by the conventional approach is compared to those 

generated by our proposed patch-wise end-to-end deep 

learning method. Consistent with the numerical results in 

Figs. 6 and 7, the MBF maps in Fig. 9 show that our method 

creates a more accurate pixel-wise MBF values which are 

more consistent with the invasive (gold standard) diagnosis in 

this patient (see caption). In contrast, the conventional method 

(even with denoising as shown in Panel C) tends to 

overestimate MBF values, hence underestimating level of the 

disease (blood flow deficit). 

IV. DISCUSSION 

In this work, we presented a novel spatially-constrained 

deep learning approach for quantification of myocardial blood 

flow from high-resolution dynamic contrast-enhanced cMRI 

datasets. Since our technique requires less than 2 seconds per 

myocardial slice (less than 6 seconds per patient) to infer the 

MBF map, it enables up to 300-fold speedup over recently 

proposed iterative methods [6,7]. This level of computational 

speedup has meaningful implications in clinical settings 

where rapid diagnosis of patients with suspected ischemic 

heart  disease  is  required. Moreover, our  results  in  clinical  
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Figure 8. Comparing high-resolution quantification using our deep learning approach and Fermi-constrained deconvolution in 29 clinical patients. 

Data from a total of 29 patients from 2 different medical centers were analyzed. None of the patients used in the analysis were included in the training. Red 

circles correspond to the representative case from Fig. 9. (A) Bland-Altman plot for average myocardial blood flow (MBF) for each acquired myocardial slice; 

97.5% of the samples fall inside the region between the upper and lower limits. (B) Comparison of correlation coefficients (R2 values) when the myocardium 

is sub-divided into different number of sectors. As expected, the agreement between the two methods deteriorates as the number of sectors increases due to 

the poor performance of the conventional method in low-SNR settings.  

Figure 9. Demonstration of robustness to noise and motion-induced errors in a clinical patient scan. (A) MBF map comparison for a patient with known 

multi-vessel coronary artery disease based on gold-standard invasive coronary angiography. (B) Adjoining image series of the mid-cavity. ECG mis-triggering 

highlighted in frames 3-5 causes the conventional approach to underestimate the septal MBF deficit. On the other hand, our deep learning approach is capable 

of “seeing through” the motion-correction error. (C) Conventional approach results after heavily denoising the image series. The septal MBF deficit is still 

underestimated due to ECG mis-triggering. This indicates that our deep learning approach can actively detect motion induced errors rather than simply learning 

to perform a denoising functionality. Furthermore, this example demonstrates the scanner-independence of our approach as it was acquired using a separate 

scanner that was not included in our training dataset.

 

studies aimed at high-resolution MBF mapping demonstrated 

a significant gain over the state-of-the-art Fermi-constrained 

deconvolution technique in terms of robustness to poor image 

quality, specifically in the presence of high level of image 

noise and/or residual myocardial motion. Future work will 

include testing/validation of the developed framework in 

large multi-center and multi-vendor studies.  
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