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Abstract— In both invertebrate and vertebrate animals, small
networks called central pattern generators (CPGs) form the
building blocks of the neuronal circuits involved in locomotion.
Most CPGs contain a simple half-center oscillator (HCO) motif
which consists of two neurons, or populations of neurons,
connected by reciprocal inhibition. CPGs and HCOs are well
characterized neuronal networks and have been extensively
modeled at different levels of abstraction. In the past two
decades, hardware implementation of spiking CPG and HCO
models in neuromorphic hardware has opened up new applica-
tions in mobile robotics, computational neuroscience, and neu-
roprosthetics. Despite their relative simplicity, the parameter
space of GPG and HCO models can become exhaustive when
considering various neuron models and network topologies.
Motivated by computational work in neuroscience that used a
brute-force approach to generate a large database of millions of
simulations of the heartbeat HCO of the leech, we have started
to build a database of spiking chains of multiple HCOs for
different neuron model types and network topologies. Here we
present preliminary results using the Izhikevich and Morris-
Lecar neuron models for single and pairs of HCOs with
different inter-HCO coupling schemes.

I. INTRODUCTION

Central pattern generators (CPGs) are small neuronal
circuits that can produce rhythmic patterns of activity [1].
The rhythmic activity results from the intrinsic properties
of the component neurons and their synaptic interactions
within a CPG, and underlies many of the adaptive rhythmic
movements such as breathing, chewing, and digesting. In
both invertebrate and vertebrate animals, CPGs also form
the building blocks of the neuronal circuits involved in
locomotion [2]. Experimental and computational work has
identified and characterized the half-center oscillator (HCO)
as a circuit building block of most invertebrate and vertebrate
CPGs [3]. The HCO is composed of two neurons, or popula-
tions of identical neurons, connected by reciprocal inhibition
(Fig. 1a). In segmented animals such as the leech, the stick
insect, and the lamprey, a chain of multiple HCOs (Fig. 1b)
regulates the activity and coordination of the individual
segments [4]–[6]. In vertebrates, the network architecture of
CPGs consist of one or several HCO motifs connected to
additional neurons.

Computational modeling has been instrumental in the
study of CPGs and HCOs, resulting in a plethora of compu-
tational models with different levels of abstraction ranging
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Fig. 1. Schematic representation of a single HCO with reciprocal
inhibition (a) and a chain of n HCO motifs (b). Red lines correspond to
inhibitory connections. Connections between two adjacent HCOs (dark gray
arrows) can be excitatory or inhibitory. Dashed arrows represent feedback
connections.

from detailed biophysical models of individual neurons [7]
to mathematical models of coupled nonlinear oscillators to
study population dynamics [8], [9]. Despite their relative
simplicity, spiking models of CPGs and HCOs are of partic-
ular interest as their implementation in neuromorphic hard-
ware has opened up new applications in mobile robotics [10],
[11], computational neuroscience [12], and neuroprosthet-
ics [13], [14]. Single HCO motifs have been implemented in
custom analog neuromorphic VLSI hardware [15]–[18], and
chains of HCOs have been implemented on FPGA boards
and the SpiNNaker platform for the control of a hexapod
robot [19]. A more complicated CPG architecture of ten neu-
rons, including two pairs of HCOs implemented on FPGA
boards, was used in a neuroprosthesis prototype in rats [13],
and a chain of the same CPG models was implemented for
the locomotion control of a snake robot [20].

Depending on the level of abstraction of the individual
neurons and the different network topologies studied, the
parameter space of these HCO and CPG models can become
very large. In computational neuroscience, the systematic
exploration of the parameter space of biophysically detailed
individual neuron models [21] and HCO models [22], [23]
was carried out to built two large databases with millions
of simulations with different parameter combinations. These
database were created mainly for neuroscientists to shed
light on how intrinsic membrane conductances and synaptic
interactions give rise to specific network activity patterns.
Although spiking models of HCOs and chains of HCOs
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have been implemented with the Izhikevich [24] and the
Morris-Lecar [25] neuron models [20], [24]–[26], there is
currently no database of chains of multiple spiking HCO
models available to inform their design and implementation
in neuromorphic hardware. Our long-term goal is to build
such a database by simulating chains of multiple HCO
models for different types of bursting neuron models and
network connectivity. Here we present results for pairs of
HCOs constructed with two types of neuron models and
various coupling schemes.

II. METHODS

Single HCOs and chains of multiple HCOs were con-
structed with two types of spiking neuron models that
reproduce the bursting behavior observed in animal HCOs:
the Izhikevich and Morris-Lecar neuron models. Moreover,
both of these neuron models have been implemented in
neuromorphic hardware HCOs models used in robotics [19],
[20]. Each neuron of an isolated HCO received an external
input current and an inhibitory connection from the other
neuron (Fig. 1a).

A. Neural models

The Izhikevich neuron model [27] is defined by the
following system of coupled differential equations:

v0 = 0.04v2 + 5v + 140� u+ I (1)
u0 = a(bv � u) (2)

with the reset condition

if V � 30 mV, then

(
v  c

u u+ d
(3)

where u and v are dimensionless variables, and a, b, c and d

are dimensionless parameters. The variable v corresponds to
the membrane potential of the neuron and u correponds to a
membrane recovery variable. The parameter a represents the
rate of recovery of u, b is the sensitivity of the recovery of
subthreshold fluctuations of the membrane potential, and c

and d are the after-spike reset values of the v and u variables,
respectively. The parameter c corresponds to the leak reverse
potential. Different parameter combinations can reproduce
different bursting behaviors with varying number of spikes
per burst and inter-burst intervals.

The Morris-Lecar neuron model [28] is another system of
coupled differential equations defined as:

C
dV

dt
= �gL(V � VL)� gCam1(V � VCa)

�gKw(V � VK) + I
(4)

dw

dt
= �w(V )(w1(V )� w) (5)

where gL, gCa, gK are the leak, calcium, and potassium
conductances, and m1 and w are the gating variables for
calcium and potassium, respectively. The voltage trace of
this model does not represent individual spikes but rather
the burst envelope.

B. Network topology and output patterns of activity

We explored isolated spiking HCO motif and chains of
multiple HCOs with different coupling schemes. For chains
of HCOs, we added a synaptic current to the voltage equa-
tions. A synaptic conductance with a single exponential
decay was used for the simulations with the Izhikevich
neuron model. For simulations with the Morris-Lecar neuron
model, synapses were modeled as a sigmoidal function of
the pre-synaptic voltage [26] and the corresponding synaptic
current is given by:

Isyn = gsynsji(Vj)(Vi � Esyn) (6)

with
sji(Vj) = 0.5(1 + tanh(

Vj � ⌘

k
)) (7)

where i and j refer to the pre-synaptic and post-synaptic
neuron, respectively, ⌘ is the synaptic threshold, and k the
synaptic gain.

For pairs of coupled HCOs, we considered purely feed-
forward excitatory connections and mixed excitatory feed-
forward and feedback connections. Feedforward and mixed
feedforward/feedback connections could be between the
same neuron of both HCOs or between different neurons
of each HCO (cross-connections), e.g. excitatory connection
between neuron 1 of HCO1 and neuron 2 of HCO2.

The spiking activity of a given HCO was classified in four
distinct types: silent, asymmetric, spiking, and bursting. A
HCO was classified as silent when none of the two neurons
spiked, or as asymmetric when only one of the neuron spiked.
When both neurons fired, we distinguished between spiking
and bursting patterns of activity.

C. Simulations and database organization

Simulations of spiking HCOs with both types of neuron
models were carried using a brute-force approach in which
we systematically explored the parameter space by varying
each individual parameter. The differential equations of both
neuron types were integrated by using the 4th order Runge-
Kutta method with a time step of 0.1 ms. Custom Matlab
(The Math Works, Inc.) code was run on a desktop com-
puter and on multicore processors through the Neuroscience
Gateway (NSG) portal [29]. After changing an individual
parameter, each simulation was run for 5 seconds to allow the
model to reach a stable activity. The simulations were then
continued for another 40 seconds during which we recorded
the spiking and bursting activity of each individual neuron.
Results from the simulations were stored in a hierarchical
folder structure. For each non-silent HCO, we computed its
period, duty cycle, and phase between the two neurons. All
parameters were varied across 0%, 25%, 50%, 75%, 100%,
150%, and 200% of their canonical values. The time constant
of the single exponential inhibitory synapse in the Izhikevich
neuron model was varied over across the values 20, 30, 40,
50, and 60 ms. The leak reverse potential in the Morris-
Lecar neuron model was varied across the values -70, -65,
-60, and -55 mV. The external input current was varied across
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Fig. 2. Spiking behavior of two neurons of a single HCO motif for the
Izhikevich (a) and Morris-Lecar (b) neuron models. In (a), the parameter
values for the silent mode are: I=2, a=0.02, b=0.2, c=-65 mV, d=8, Isyn=8,
⌧syn = 40ms; for the spiking mode, same as silent except I=8; for the
asymmetric mode, same as spiking except Isyn=18; for the bursting mode,
same as spiking, except I=5, c=-50 mV, d=0.5. In (b), the parameter values
for the spiking mode are: I=0.8 µA, gL=5 µS, gCa=15 µS, gK=20 µS,
gsyn=10 µS, EL=-50 mV; for the asymmetric mode, same as spiking,
except gK=10 µS and gsyn=5 µS. The voltage traces of different neurons
are indicated in different colors.

the values 0.4, 0.6, 0.8 and 1 µA for three different levels
of Gaussian noise (0, 1, and 2 standard deviation).

III. RESULTS

HCOs with different patterns of spiking activity are shown
in Figure 2 for both types of neuron models. Each HCO was
constructed with a different set of parameters.

Dimensional stacking [30] was used for the data visual-
ization of all simulations for a given HCO model. Dimen-
sional stacking provides a quick way to visually determine
regions of the parameter space correspoonding to silent,

and therefore non-functional, HCOs with no spike and zero
phase. The mean period of a single HCO motif composed
of two Morris-Lecar neurons for all parameters values is
shown in Figure 3. In that plot, the values of the external
current I , leak conductance gL, and calcium conductance
gCa are represented on the x axis, while the values of the
potassium conductance gK , synaptic conductance gsyn, and
reverse potential EL are on the y axis. Each parameter
value corresponds to a bin which is further subdivided to
accommodate the representation of the other parameters. In
these simulations, the external current was identical for both
neurons and contained no noise. The synaptic conductance
was varied across the values 5, 10, 15, and 20 ms. The
synaptic reverse potential was not varied and was kept at
-20 mV in order to facilitate the data visualization.

Fig. 3. Dimensional stacking of all 4,096 simulations for a single HCO
motif with the Morris-Lecar neuron model. The period of each HCO is
color-coded according to the colormap on the right. Darker shades of blue
correspond to higher periods. Each bin on the x and y axis corresponds to
a range of values for each parameter. The calcium conductance gCa, leak
conductance gL, and external current Iµ values are represented on the x
axis. The external current has no noise and the different noise levels are
not shown. The leak reverse potential EL, synaptic conductance gsyn, and
potassium conductance gK values are represented on the y axis.

For pairs of coupled HCOs, we investigated the influence
of the coupling scheme between adjacent HCO motifs on
the number of spikes per burst fired by each individual
HCO (Figure 4) composed of Izhikevich neurons. In these
simulations, feedforward connections from HCO1 to HCO2

were purely excitatory, and feedback connections were either
excitatory (exc.) or inhibitory (inh.).

IV. CONCLUSION

In this work, we have presented preliminary results toward
the creation of a database of spiking HCO networks com-
posed of one or multiple HCO motifs, and using different
types of busrting neuron models. Simulations were carried
out through the freely available high-performance cloud
computing resources of the NSG portal. This database is
envisioned as a resource to help and facilitate the design and
implementation of spiking HCO and CPG network models in
neuromorphic hardware and FPGA boards. Once completed,
this database will be made publicly available.
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Fig. 4. Effect of the coupling scheme between pairs of HCOs connected
on the number of spikes per burst for each individual HCO.
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