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Abstract— Accurate quantification of bone and cartilage
features is the key to efficient management of knee osteoarthritis
(OA). Bone and cartilage tissues can be accurately segmented
from magnetic resonance imaging (MRI) data using supervised
Deep Learning (DL) methods. DL training is commonly
conducted using large datasets with expert-labeled annotations.
DL models perform better if distributions of testing data
(target domains) are close to those of training data (source
domains). However, in practice, data distributions of images
from different MRI scanners and sequences are different and
DL models need to re-trained on each dataset separately.
We propose a domain adaptation (DA) framework using
the CycleGAN model for MRI translation that would aid
in unsupervised MRI data segmentation. We have validated
our pipeline on five scans from the Osteoarthritis Initiative
(OAI) dataset. Using this pipeline, we translated TSE Fat
Suppressed MRI sequences to pseudo-DESS images. An
improved MaskRCNN (IMaskRCNN) instance segmentation
network trained on DESS was used to segment cartilage
and femoral head regions in TSE Fat Suppressed sequences.
Segmentations of the I-MaskRCNN correlated well with
approximated manual segmentation obtained from nearest
DESS slices (DICE = 0.76) without the need for retraining. We
anticipate this technique will aid in automatic unsupervised
assessment of knee MRI using commonly acquired MRI
sequences and save experts’ time that would otherwise be
required for manual segmentation.

Clinical relevance— This technique paves the way to au-
tomatically convert one MRI sequence to its equivalent as if
acquired by a different protocol or different magnet, facilitating
robust, hardware-independent automated analysis. For exam-
ple, routine clinically acquired knee MRI could be converted
to high-resolution high-contrast images suitable for automated
detection of cartilage defects.

I. INTRODUCTION

Knee osteoarthritis (OA) significantly reduces quality of
life and creates a substantial financial healthcare burden.
There is a growing need for techniques that accurately quan-
tify and track the extent of tissue damage and identify poten-
tial targets for treatment. Effective long-term OA follow-up is
often hampered by a lack of accurate reproducible biomark-
ers. MRI can be used to study structural change in OA
based on cartilage thickness, which has been used to predict
knee replacement [1] and validate alternative intervention [2].
Regional differences in cartilage thickness have also been
correlated with joint space narrowing (JSN) [3] which is
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a well-established radiographic marker of OA progression.
Changes in cartilage thickness and volume between sub-
regions of the knee have further been used to establish a
timeline for survival rate [4].

Automatic or semi-automatic measurements are suited
for longitudinal assessment of knee MRI as it reduces the
possible variability between readers and saves time. Seg-
mentation of knee tissue from MRI is a key to measuring
cartilage thickness. Deep Learning (DL) based techniques
using Convolutional Neural Networks (CNN) have shown
great success in knee and hip tissue and pathology segmen-
tation [5]–[10]. These techniques use supervised learning
and are trained on large datasets with ground truth. How-
ever, the accuracy of DL models trained on one dataset
(source dataset) drops when it is tested on a new dataset
collected (target dataset) in a dissimilar imaging circum-
stance. Generally, source and target datasets have different
data distribution due to the domain shift across different
vendors, data collection centers, image acquisition proto-
cols and sequences. Each dataset with a specific imaging
protocol, modality, or vendor can be considered as a point
on a high-dimensional non-linear manifold with significant
differences in their statistical distribution [11]. Retraining
these models requires expert-labeled annotations for each
dataset and human readers with medical expertise, which
are time-consuming and expensive. Therefore, the need for
generalizable DL models that perform well on unseen data or
data without annotations is increasingly gaining recognition
[11]–[13]. Consequently, Unsupervised Domain Adaptation
(UDA) and domain generation techniques that enable an
existing model to adapt to multiple datasets have generated
research interest [11]. These approaches aim to reduce data
distribution differences between source and target data when
annotation is not available.

The popular domain adaptation technique of image adap-
tation aligns the appearance of an image between two
domains by pixel-to-pixel transformation [14]. In natural
images, such pixel-to-pixel transformation can be obtained
by image translation using Generative Adversarial Networks
(GAN) [15]. Cycle consistent GAN (CycleGAN) [16] is a
suitable candidate for medical images pixel-to-pixel domain
adaptation [12], [13] as they enforce a reverse mapping
between the source image and the generated image which
reduces the chance of generating images that are anatomi-
cally improbable. CycleGANs have been used in MRI for
compressed sensing, improving the quality of segmentation
and domain adaptation [17].

In this paper we propose to translate unpaired MRI data
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from the source domain (COR IW 2D TSE Fat Suppressed
MRI) to the target domain (Sagittal 3D DESS WE) and pass
the generated pseudo target domain images to the segmen-
tation algorithm. As the TSE Fat Suppressed is a common
clinical sequence and with availability of the large labeled
datasets like those of the Osteoarthritis Initiative (OAI) we
can translate the clinical images to research sequences to
extract meaningful information from clinical images. We
accomplished this goal using the CycleGAN model for image
translation, which reinforces the reverse mapping between
two MRI modalities. Further, to make the network aware of
context of interest, we passed DESS segmentation labels to
the network. Bone and cartilage tissues in the source were
segmented using an I-MaskRCNN [9], [18] model trained on
labeled image from the target.

II. PROPOSED METHODOLOGY

The I-MaskRCNN instance segmentation network was
trained to identify cartilage tissue in DESS MRI slices. The
CycleGAN was then used to segment 2D TSE Fat Sup-
pressed MRI data without retraining (fig. 1). The CycleGAN
architecture and I-MaskRCNN are explained in the following
sections.

Fig. 1. Segmentation using domain translation pipeline.

A. Data Preparation

The sagittal DESS MRI data were re-sliced into the coro-
nal view. Furthermore, to have the same field of view (FOV)
and matrix size, the re-sliced images were interpolated, and
zero padding was incorporated. Additionally, the bone and
cartilage segmentation labels were added to the images as
the third channel. Adding bone and cartilage labels gives
additional context aware information to the network.

B. CycleGAN

CycleGAN improves upon the GAN architecture by intro-
ducing two generators for mapping from source-to-target (in
this paper GTSE→DESS (fig. 2) and from target-to-source
(in this paper GDESS→TSE) and two discriminators (DTSE

and DDESS (fig. 2) for adversarial learning [16]. The latter
is an inverse mapping that ensures similarly with the original
image and is represented as the cycle consistency loss:

Lcycle(Gx, Gy) = Ex∼pdata(x)[‖x−Gx(Gy(x)‖1]
+Ey∼pdata(y)[‖y −Gy(Gx(y)‖1].

(1)

Furthermore, the identity loss is deployed for the time that
real samples of a given domain are provided as input to
the generator, to regularize the generator to be close to an
identity mapping [16]:

Lidentity(Gx, Gy) = Ey∼pdata(y)[‖Gy(y)− y‖1]
+Ex∼pdata(x)[‖Gx(x)− x‖1]

(2)

Fig. 2. (I) Overview of the CycleGAN model Using the 2D TSE Fat
suppressed MRI slice the CycleGAN generates a pseudo-DESS image which
is segmented by the I-MaskRCNN.

The adversarial loss is applied to both mapping func-
tions.The adversarial loss for the mapping function G : X →
Y and its corresponding discriminator Dy would be:

LGAN (G,Dy, X, Y ) = Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x))].
(3)

C. I-Mask RCNN

The MaskR-CNN instance segmentation network model
[19] is constructed from a backbone which is responsible for
feature extraction, a region proposal network responsible for
extracting the bounding box around the region of interest,
and two heads: one for mask segmentation, and the other
for classifying the extracted bounding boxes. This model
gave highly accurate instance segmentation of objects on
various natural image datasets. I-Mask RCNN is a modified
version of the original Mask RCNN that improves the
segmentation accuracy around object boundaries by adding a
skip connection and adding an encoder layer to the mask seg-
mentation head [9], [18]. This feature is particularly useful
in detecting faint boundaries between anatomical structures
seen in medical images. The pseudo–COR-DESS MRI slices
generated using the CycleGAN were forwarded to the I-Mask
RCNN for the segmentation of bone and cartilage.

D. Training

The CycleGAN was trained on 8000 MRI slices of the
clinical TSE Fat Suppressed sequences (the source domain)
and 12000 of MRI slices of higher quality DESS sequences
(the target domain). The Mask-RCNN network was trained
on 300 DESS sequence MRI (resliced to COR view) scans.

III. DATA

Data from the National Institutes of Health (NIH) spon-
sored multicenter Osteoarthritis Initiative (OAI) dataset was
used to validate our approach. OAI includes MRI data
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obtained from 4706 subjects aged between 45 and 79 years.
Knee imaging was performed using 3.0 Tesla MRI scanners.
COR IW TSE Fat Suppressed sequence is one of the OAI
data protocols for highlighting medial cruciate ligaments and
marginal femoral and tibial osteophytes [20]. Sagittal 3D
DESS provides good cartilage discrimination. A high number
of segmentation labels are available through the OAI-ZIB
dataset [21].

A. Validation

The results of the image translation were validated on
2 metrics: 1. Image similarity of the generated image with
the nearest DESS image slice from the same patient using
the cosine similarity (CS) measure, and 2. Accuracy of
segmentation of a trained I-MaskRCNN network on pseudo-
DESS images generated using CycleGAN using the dice
score (DS). These measures are defined below as:

CS =
IpsedudoDESS

.IDESS

‖IpsedudoDESS
‖.‖IDESS‖

(4)

DS =
2× |P

⋂
GT |

|P |+ |GT |
(5)

where Ipseudo−DESS , IDESS , P and GT represent the
pseudo-DESS image, original DESS image, predicted mask
and ground truth segmentation, respectively.

IV. RESULTS

The trained CycleGAN on PDFS and DESS images is
validated on 125 images from five patients randomly sampled
from the remaining images in the OAI dataset.

A. Image Similarity

CycleGAN was able to generate pseudo-DESS images that
closely resembled the slices in the DESS image (fig. 3).
Pseudo-DESS and original DESS images (i.e. anterior, mid
and posterior knee joint segments) of the same individual
were qualitatively compared. For each TSE image slice, the
closest DESS MRI slice (based on the position information in
the DICOM header) was selected manually and the cosine
similarity of this image with the pseudo-DESS image was
calculated. The pseudo-DESS images showed high cosine
similarity of 0.86 over the test dataset (Table I).

B. Accuracy of Segmentation

The trained I-MaskRCNN achieved dice score of 0.95 on
DESS images and then tested on: 1. Original TSE slices
(with no image translation), and 2. pseudo-DESS images
generated by the CycleGAN. The I-Mask R-CNN was almost
unable to generate segmentation on TSE data, there results
were inaccurate and gave a very low dice score of 0.1. By
changing the data distribution the segmentation on pseudo-
DESS showed high agreement with expert segmentations
(fig. 4).

Difference in segmentation accuracy was statistically sig-
nificant between pseudo-DESS (dice score = 0.73) vs original
TSE (dice score = 0.1) images p-value < 0.05 (Table I).

Fig. 3. Image translation results. (a) TSE sequence; (b) CycleGAN’ s result
pseudo-DESS; (c) original DESS (nearest slice to pseudo DESS). (d) cosine
similarity between pseudo DESS and nearest real DESS slice (1(red)= high
similarity, 0 (blue) = low similarity).

Fig. 4. CycleGAN pipeline results. (a) TSE; (b) pseudo DESS; (c) nearest
real DESS slice; (d) segmentation overlayed on TSE; (e) difference between
nearest DESS slice label and segmentation result (red: overlap, blue= pseudo
DESS, orange= DESS label).

V. DISCUSSION

In this paper, we developed a technique to translate
between two different MRI sequences - 2D PDFS and 3D
DESS - which were extracted from the OAI data. These
sequences were chosen because their perceptual differences
are great and the domain shift phenomenon between them is
readily observable and due to shortage of label for retraining
networks on clinical sequences.

CycleGANs have been used for image translation in sim-
ilar applications in natural and medical images. This work
is one of the first attempts for image-to-image translation
between different knee MRI sequences using CycleGAN.

Since the CycleGAN performs unpaired translation, no
correspondence was required between the images during
training. On a set of five scans, pseudo-DESS images
generated using CycleGAN showed more similarity (cosine
similarity 0.86 vs 0.8)) with the closest slice in the actual
DESS sequence than the TSE sequance. As an indirect
measure of the quality of image translation, we also exam-
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TABLE I
COSINE SIMILARITY (CS) AND DICE SCORE

CS DS I-MaskRCNN
Original TSE 0.80 0.13

Pseudo-DESS (CycleGAN) 0.86 0.73

ined the performance of a trained I-MaskRCNN instance
segmentation network on original PDFS (with no image
translation) and pseudo-DESS data from the CycleGAN.
The trained I-MaskRCNN gave acceptable segmentations on
pseudo-DESS data generated from CycleGAN (dice score
0.73). Segmentation images generated from pseudo-DESS
showed high agreement with ground truth segmentation upon
visual inspection and were suitable for measuring cartilage
thickness which is an important OA biomarker.

The limitation of our study first is that our MRI is acquired
using high resolution 3T MRI scanners that might not be
available in all clinics. As an extension of this work, we
plan to adapt the CycleGAN approach to translate between
low quality 1.5 T MR images to pseudo-3T MR images.
Along similar lines, our approach would also be extended to
similar applications in hip MRI where lower quality images
can be enhanced for identifying OA biomarkers like effusion.
Second, CycleGAN potentially generates spurious artefacts
in the pseudo-DESS image. This limitation is addressed in
part by improving adding segmentation label to make the
network context aware. However, in some anterior and pos-
terior slices we observed that both models generated spurious
bright artefacts and dark patches. Another limitation pertains
to the need for large dataset for training CycleGANs. Unlike
natural images where large numbers of labeled images are
available, labeled medical image data (and MRI in particular)
is scarce. Future extensions of this study would aim to
address this limitation by collecting large numbers of MRI
data prospectively and incorporating retrospectively collected
MRI images from multiple centers.

VI. CONCLUSION

We proposed and validated an image translation frame-
work for knee MRI sequences using CycleGAN. The en-
hanced images generated using our method allowed auto-
matic and accurate segmentation of new knee MRI data
without re-training. We expect this technique to lead towards
fast and accurate quantification of large numbers of knee
MRI which would result in improved and more targeted OA
care.
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