
  

 

Abstract— One of the greatest concerns in post-operative 

care is the infection of the surgical wound.  Such infections are 

a particular concern in global health and low-resource areas, 

where microbial antibiotic resistance is often common.  In 

order to help address this problem, there is a great interest in 

developing simple tools for early detection of surgical wounds. 

Motivated by this need, we describe the development of two 

Convolutional Neural Net (CNN) models designed to detect an 

infection in a surgical wound using a color image taken from a 

mobile device. These models were developed using image data 

collected from a clinical study with 572 women in Rural 

Rwanda, who underwent Cesarean section surgery and had 

photos taken approximately 10 days after surgery. Infected 

wounds (N=62) were diagnosed by a trained doctor through a 

physical exam.  In our model development, we observed a 

trade-off between AUC accuracy and sensitivity, and we chose 

to optimize for sensitivity, to match its use as a screening tool. 

Our naïve CNN model, with a limited number of convolutions 

and parameters, achieved median AUC = 0.655, true positive 

rate sensitivity = 0.75, specificity = 0.58, classification accuracy 

= 0.86. The second CNN model, developed with transfer 

learning using the Resnet50 architecture, produced a median 

AUC = 0.639 sensitivity = 0.92, specificity = 0.18, and 

classification accuracy 0.82. We discuss the specific training 

and optimization methods used to compensate for significant 

class imbalance and maximize sensitivity. 

I. INTRODUCTION AND MOTIVATION  

A. The Burden and Challenge of Surgical Infections 

The process of infection produces multiplication of 

microorganisms in the body tissues, which can produce 

competitive metabolism, toxins, intracellular replication or 

antigen-antibody response [1].  If not treated, an infection can 

become systemic and spread through the body causing sepsis 

and leading to tissue damage, organ failure and even death.  

In most developed countries and wealthier communities, 

approximately 2% - 5% of patients develop Surgical Site 

Infections (SSI), directly resulting in approximately 0.64% of 

hospital deaths and also causing costly readmissions [2]. In 

low-resource settings, however, surgical site infections (SSIs) 

are an even greater concern, due to limited access to medical 

facilities and trained health personnel. In low-resource rural 

areas, such as Rwanda, for example, approximately 11% of 

women who have Cesarean section births develop a wound 
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infection, which often puts the mother’s life at risk [3].  

In many developing countries, there exist community 

health workers that provide home visits to families and new 

mothers.  However, these healthy workers are low-skilled and 

lack tools that can help to diagnose or screen for infection. 

B. Standard Practice for Detecting Wound Infection 

Conventional methods for detection of infection rely on 
subjective clinical signs, including heat, erythema (redness), 
swelling, pain, fluid discharge, and odor. Several published 
guidelines and manuals exist from government organizations 
such as the Centers for Disease Control (CDC/NHSN) in the 
U.S. [4].  In the past 40 years, some scoring systems, such as 
the ASEPSIS score, have been developed [5], but require 
some amount of training and clinical experience.  

C. Digital Tools for Surgical Infection 

Over the past 20 years, a variety of computer-based tools 
have emerged to assist with wound care, such as 
+WoundDesk Wound Care or WoundCheck, that are 
available to help monitor and document the healing of acute 
and chronic wounds [6].  The value of photographs to help 
improve the identification of infection has been studied [7]; 
however, such tools do not perform any automated analysis.      

Smart phone platforms, such as Tissue Analytics [8], and 
Mobile Post-Operative Wound Evaluator (mPOWER) [9], 
enable patients to transmit data and photos of their wound to 
their doctors and health care providers. These tools can be 
used to automatically measure the size of the wound, but no 
prediction is given regarding the infection status.  

 
Fig. 1. A community health worker capturing an image 

of a post-Cesarean section wound during a home visit in 

rural Rwanda. 
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D. Prior Work and Current Contribution 

In the past year, machine learning models have begun to 
emerge that can be used to predict infection [10].  Based on 
our initial work with a simple logistic regression model [11], 
we discovered that overfitting can be a serious concern in 
these models, and we also observed that that class imbalance 
is an important challenge in these data sets, which needs to be 
addressed explicitly.  In this paper, we present two deep 
learning models used to predict wound infection, particularly 
addressing the problems of class imbalance and overfitting. 
We also discuss how the sensitivity of the model can be 
tuned to meet requirements for use as a screening tool.  

II. CLINICAL STUDY 

A. Study Design 

Image data used for model development was collected as 

part of a study conducted by Harvard Medical School and 

Partners In Health (PIH), in Kigali, Rwanda. This study 

focused on Cesarean section surgery at the Kirehe District 

Hospital in rural Rwanda. The study included mothers who 

were at least 18 years old and who underwent Cesarean 

section births between March and October 2017. Women 

were enrolled prior to discharge and were provided a travel 

voucher to return to the hospital for a special visit at 10 days 

(+/- 3 days) after Cesarean section. Of the 729 eligible for 

follow-up, 572 (78.5%) women returned for this 10 day visit. 

This clinical study was approved by the Institutional 

Review Boards (IRBs) of Harvard Medical School, MIT, and 

Kirehe District Hospital.  

B. Data Collection and Labelling 

Wound images were captured by designated community 

health workers using an Android tablet (Samsung Galaxy 

Tab 3). Each image was also given an independent clinical 

examination by a general practitioner doctor to determine if 

the Cesarean section wound was infected or not.  From this 

examination data, it was determined that 62 of the 572 

wounds were infected. 
All images were wirelessly uploaded to a central server, 

and all images were cross-referenced with the list of SSI 
diagnoses by the doctor.  

III. NAÏVE CNN MODEL 

A. Algorithm Design and Implementation 

     Using the resulting image data, comprised of 62 infected 
and 510 non-infected images, we first created a few-layer 
naïve convolutional neural net (CNN) model. The benefit of 
using a naive model with limited number of simple layers is 
that it enables the use of all pixels in an input image, which 
avoids the need to resize or crop the image and potentially 
lose information. 
     For development, we used the Keras Tensorflow library 
(https://keras.io/) to compile and train these CNN models in 
Python. This model architecture was comprised of 3 
convolutional layers ending with a dense layer to divide 
images into two classes. We used ReLU activation between 
layers, followed by a pooling layer. Finally, we added a 
fully-connected sigmoid activation layer (as opposed to 
SoftMax) with dropout at a rate of 0.5 to reduce overfitting, 

resulting in the final output label “0” for non-infected or “1” 
for infected. 

B. Addressing Class Imbalance and Sensitivity 

     Given that the number of non-infected images (majority 
class) was 9 times larger than the number of infected images 
(minority class), it was necessary to properly compensate for 
this class imbalance. While it would be easy to achieve high 
classification accuracy by simply predicting all images as 
non-infected, the fundamental purpose of our project is to 
identify infected wounds. Thus, for this context, the 
sensitivity was more important than the classification 
accuracy, and we needed to choose an operating point for 
the model that would minimize false negatives. 
     In order to improve the model training to enable the 
model to correctly detect members of the minority class, we 
applied several standard methods described below:   
     Data Synthesis: As a standard method for growing the 
size of the minority class (infected wounds) we implemented 
the popular SMOTE method [12], which synthesizes new 
data that is statistically similar to the minority class.  While 
this method is very effective, we limited the amount of data 
synthesis to a factor of 2 in order to avoid overfitting.  
     Class Weights: In order to compensate for class 
imbalance during training, the class weights were also 
modified within the Keras machine learning library. We ran 
trials of the model with different values of relative weights, 
from 0 to 20, and the best performance was obtained for 
relative weight of 9:1 (infected to non-infected), which was 
roughly inversely proportional to the prevalence rate of 
infected to non-infected images. 
     Creating a custom cost/loss function: A variety of 
custom loss functions were also explored to adjust the 
penalty for misclassified images during training. While this 
method did indeed enable the model to correctly more detect 
infected images (i.e. increase the true positive rate), it also 
significantly prolonged our convergence time during 
training. For our final models we decided to use instead a 
more conventional binary cross-entropy loss function, 
otherwise known as “log loss,” which yielded comparable 
results while still allowing moderate run times. 

 
Fig. 2. The ROC curve for a trial of the naïve CNN model 

with median AUC = 0.655, showing range of specificity 

(false positive rate) and sensitivity (true positive rate). 
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C. Model Training 

     In addition to class imbalance, we addressed the general 
issues of generalizability and overfitting by modifying our 
data pre-processing to include a random flip, a random 
rotation, and batch normalization. Given the limited number 
of positive infected images, we also implemented k-fold 
cross validation, 1/k and (k-1)/k, for validation and training 
sets, respectively, with data splits of k = 5 and 10, 
corresponding to 13 and 6 infected images, respectively. 
     For model training, we also tested three standard 
optimizer algorithms (Stochastic Gradient Descent (SGD), 
Adam, and RMSprop) and two different amounts of training 
(30 epochs and 50 epochs). We did not extend beyond 50 
epochs, since the convergence was adequate beyond 25 
epochs and we wanted to avoid overfitting. 
     We ran over one hundred iterations of different 
combinations of weights, optimizer functions, training 
epochs, while also testing different the custom loss functions 
and drop-out rates for the final layer.  For each combination 
of parameters, we ran 5-fold and 10-fold cross validation to 
generate a set of Receiver Operating Characteristic (ROC) 
curves and to calculate the median AUC value, sensitivity, 
and specificity. In order to better track the amount of false 
negatives, we also calculated the Matthews correlation 
coefficient (MCC), which is a more thorough metric for 
binary classification [13]. As we expected, 5 folds 
performed better, generalizing to more data and producing 
smoother ROC curves, while 10 splits resulted in more 
overfitting, despite exhibiting a higher AUC accuracy score. 

D. Final Prediction Results 

Our final Naïve CNN model results are shown in Figure 4.  
This model produced a median AUC = 65.5%, with an 
interquartile range, IQR = 0.27.  The model yielded a true 
positive rate (sensitivity) = 75% and false positive rate 
(specificity) = 58%. As previously mentioned, higher values 
of AUC were possible, but we rejected models with 
sensitivity values < 75%. 

IV. TRANSFER LEARNING MODEL 

A. Algorithm Design and Implementation 

As a possible improvement over our naïve CNN model, 
we also a transfer learning approach, which makes use of a 
pre-trained, highly sensitive neural network used widely for 
image classification. This approach uses a more complex 
architecture, with many convolutions and transformations. 
The hope was that this model would be able to find better 
detail and distinctions between the different image classes in 
order to perform binary classification. A main difference 
against the naïve model is that image preprocessing must be 
applied to our dataset in order to match the specification of 
the images on which the original model was trained. This 
preprocessing involves reducing the image pixel size to 224 x 
224, which reduces detail in the image, in order to reduce the 
required computational training time. Given the contrast with 
the large image-size naïve CNN model, it was useful to 
explore and contrast these two different approaches. 

For transfer learning, we chose the ResNet50 model, 
which is a 50-layer deep convolutional neural net model that 
has excellent demonstrated performance for image 
classification tasks (Figure 2).  In order to customize to our 

application, we added some additional layers to the output of 
the ResNet50 model. This addition included a dense layer 
that outputs images into two classes, with a sigmoid 
activation, and using a node dropout of 20%. As in the 
previous model, we also added a random flip, random 
rotation, and batch normalization in order to improve 
generalizability. 

B. Model Training 

As in the previous model, we used k-fold validation to 
find the training fold most representative of the remaining 
validation data, given our limited data size. Many trials were 
run with differing parameters, including number of epochs, 
optimizers, class weights, and splits.  

C. Addressing Class Imbalance 

For this transfer learning model, we addressed the class 
imbalance using the same methods as described previously. 
The most effective of these methods in the transfer learning 
model was moderate use of the SMOTE method to avoid 
overfitting, as well as adjustment of the class weights, which 
allowed the model to become more sensitive to the infected 
images.  

D. Prediction Results from Transfer Learning 

The resulting ROC curve for the transfer learning CNN 
model is shown in Figure 4. As can be seen from the figure, 
the median AUC of 63.9% is comparable to the naïve CNN 
model, with sensitivity = 93% and specificity = 18%. 
Although the overall performance was somewhat better than 
the naïve CNN, this model requires greater computational 
time to run, which needs to be considered for actual 
deployment. 

V. DISCUSSION 

 The summarized results are shown in Table 1.  For 
comparison, Table 1 also shows our optimized logistic 
regression model that was been corrected for overfitting and 
class imbalance.  As can be seen from these results, the 
neural net models perform better than logistic regression. 
However, the performance is only moderate. 

Comparing the two CNN models, both models had similar 
performance, within the margin of error.  However, in our 
training, we observed that the naïve CNN model has lower 

 
 

Fig. 3. The architecture of the ResNet50 neural net. Note 

large number of convolutions and fully-connected layers. 
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variability across the different folds compared to the transfer 
learning model.    

While the sensitivity of both CNN models is greater than 
80%, (with classification accuracy > 80%), the AUC 
accuracy is fairly moderate at 65%. While these results show 
some promise, we are currently exploring additional color 
calibration and image processing methods to help improve 
performance. Further data collection is also needed to test 
the generalizability of these results. 

While the ability to detect infection with a mobile phone 
image represents a useful contribution to global health, it is 
important to consider possible limitations of a color based 
model such as the ambient lighting and the dependence on 
patient skin color.  Although we expect that the patient skin 
color is an important variable, it should be noted that in 
many of the communities encountered in global health, 
including this study, the skin color is fairly homogenous.  
Thus, it would be possible (and feasible) to develop several 
different models, depending on the skin color of the local 
population. 

Given that neural net models have poor interpretability, 
we are also currently undergoing work to investigate specific 
properties of the image that contribute to the infection 
prediction, and it is known that CNN models are highly 
sensitive to both color and texture differences.  Preliminary 
findings indicate that the wound color near the edge of the 
wound incision is particularly important. Additional data 
collection has also been recently conducted that will enable 
further validation of these algorithms with a larger number of 
images. 

VI. CONCLUSION 

We have developed two Deep Learning CNN algorithms 
to predict surgical site infection using images collected from 
mobile devices. Our results from our study with 572 patients 
demonstrate some ability to predict infection from a color 
image. The CNN models demonstrated sensitivity>80% 
which is sufficient as a screening tool; however, the overall 
median AUC accuracy of 64% is moderate.  Nevertheless, 
given the widespread problem of surgical wound infection, 
the ability to predict an infection based on mobile phone 
images alone represents a promising new paradigm that 
should be further explored for preventing and treating 
infection. This technology represents an important advance 
for global health applications in low-resource regions as well 
as for outpatient care in wealthier developed countries. 
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Fig. 4. The ROC curves for our final transfer learning CNN 

model with median AUC = 0.639. 

Table 1. Summary of overall results comparing performance 

of model prediction from questionnaire data and image data. 

Model Sensitivity Specificity Median 

AUC 

MCC 

Logistic 

Regression 

~ 60% ~ 70% ~ 0.563 0.14 

Naïve CNN ~ 75% ~ 58% ~ 0.655 0.35 

Transfer 

Learning 

CNN 

~ 93% ~ 18% ~ 0.639 0.41 
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