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Abstract— Traditional biometrics such as face, iris and fin-
gerprint have been applied widely nowadays. Nevertheless, with
more and more potential problems being exposed, such as
privacy leak and fabricate attack, it is urgent to find new
secure biometrics to meet the needs. Identification based on
brain signals is a promising option due to its unique advantages
of confidentiality, anti-spoofing, continuity and cancelability.
Among various types of brain signals, local field potential
(LFP) has long term stability, high signal to noise ratio and
high spatial resolution, which is suitable for identification. In
this paper, we propose a novel biometric which is extracted
from LFP signals with a deep neural network. The proposed
biometric can be generated in a task-related manner thus is
cancelable. Experiments with ten rats demonstrate that, the
proposed biometric achieves a high identification accuracy of
94.47%, and the performance is stable over several days.

I. INTRODUCTION

Nowadays, traditional biometrics such as fingerprint, face,
iris, voice, etc. have been widely applied. However, these
biometrics have their own weaknesses [1], and can be easily
forged [2], [3]. In addition, these biometrics have a fatal
shortcoming that they are noncancelable. This means that
if the biometric is stolen, it cannot be replaced because
users cannot change their fingerprint, face or iris. For this
reason, a biometric that is more secure than any of the above
biometrics should meet two criteria: it is more difficult to
be stolen and it is cancelable. Identification based on brain
signals can meet these two demands.

At present, most of the research uses electroencephalo-
gram (EEG) for identity recognition, which is noninvasive
brain signal. EEG signal is acquired through electrodes
located at the scalp, which has the characteristics of low
signal-to-noise ratio, poor stability and easy to be disturbed.
The recognition system based on EEG can achieve 80%
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to 90% recognition accuracy, which is not high enough to
deploy in high security scenes [4]–[7]. In addition, changes
in the acquisition environment (such as the number of elec-
trodes, sampling rate, sample size) may reduce the accuracy.
However, the electrodes of invasive brain signals (such as
ECoG, spike or local field potential) are placed on the
cerebral cortex, which eliminates the attenuation and filtering
of the signal when transmitted through the skull and scalp
[8]–[10]. Nevertheless, in spite of the high information rate
of spikes, many researches have proposed that it is hard for
long term recording of spikes in BMI applications [11]–[16].
LFP yet has long term stability compared with spikes [17]
and has high signal to noise ratio and high spatial resolution
compared with ECoG [18], more and more researchers pay
attention to the decoding of LFP for motor intention and
continuous movement parameters [13], [18]–[20] in BMI.

In this study, we identify ten rats with implanted electrodes
using local field potential (LFP). We first calculated the
spectral power of LFP as features. Then we utilized a neural
network based on a single motor task for classification and
the results are unsatisfactory. To improve the identification
performance, we exploit a neural network for combination
of multiple tasks corresponding to three rat behaviors and
achieve 94.47% classification accuracy, which is almost 12%
higher than that using the neural network for a single motor
task. Furthermore, we find that it is more reliable using
the neural network for combination of multiple tasks over
long time periods and the classification performance is also
acceptable.

II. EXPERIMENTAL SETUP
A. Electrodes Implantation

All surgery and experimental procedures involving rats in
this study were strictly complied with the Guide for The Care
and Use of Laboratory Animals (China Ministry of Health)
and approved by the Animal Care Committee of Zhejiang
University, China. We utilized a total of ten adult male
Sprague-Dawley rats (300-350g) purchased from Zhejiang
Academy of Medical Sciences (Hangzhou, China). All rats
were placed in a 12h light/dark cycle and ate food freely,
while water was appropriately restricted to 10-15ml per day
to prompt the press lever performance of rats.

Rats were anesthetized with propofol (10mg/ml, i.p.,
1mL/100g initial dose) and mounted on a standard stereo-
taxic apparatus (RWD Life Science, China) for brain surgery.
The body temperature was retained with a heating pad, with
the heart rate (300-400 bpm) and pO2 (> 90%) monitored
during the surgery. The state of anesthesia was examinated
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Fig. 1. Deep network-based brain biometric learning.

by toe-pinch test at regular intervals. Additional dose of
propofol (10mg/ml, i.p., 0.6ml) was injected if necessary.

A 16-channel (2 × 8) handmade microelectrode array
(35µm nichrome) was implanted of which the anterior 2× 4
electrodes were in rostral forelimb area (RFA) and posterior
2× 4 lied in ipsilesional caudal forelimb area (CFA) with a
depth of 1.2-1.5mm, while the electrodes were attached to
the skulls with tiny screws and dental cement.

B. Behavioral Task
Rats were trained to perform three different behavioral

tasks: run, press and grab. For run task, Rats were trained to
run on a treadmill with the speed of 10 km/h. For press task,
rats were trained to press the lever down over a threshold
given with the water as reward. For grab task, rats were
trained to grab the food crossing an infrared device to record
the exact movement time.

The rats were recovered for three to four weeks before
training and routine experiments. The signal acquisition
lasted for two weeks. For each session, rats were restricted
to run for 10 minutes, press and grab respectively for 20
minutes.

C. Data Collection
All data were recorded using a commercial multi-channel

neural signal acquisition system (Plexon TM, OmniPlex/128)
with amplification of 1750 and a notch filter of 50Hz. Here
we collected the signal of 10 rats for two weeks for each
behavior.

III. METHODS
As shown in Fig. 1, we first calculated the spectral power

of LFP as features. Then we utilized a neural network
based on single behavior for classification. Furthermore, we
employed the neural network for combination of multiple
tasks and adopted majority voting rule to determine the most
likely number of the rat.

A. LFP Spectral Analysis

We firstly preprocessed LFPs with a 0.5-500Hz bandpass
filter (2-order Butterworth) to extract features from the LFPs
of CFA and RFA and then matched the LFP signals with
each behavior.

The power of following six different frequency bands for
each trial were calculated by applying 512-point windows
with overlap to provide one sample every 100ms: delta (δ,
0.5-4Hz), theta (θ, 4-8Hz), alpha (α, 8-12Hz), beta (β, 12-
30Hz), gamma1 (γ1, 30-120Hz), gamma2 (γ2, 120-200Hz).

Hanning window followed by a fast Fourier transform
to each window was used for power calculation. The log
transform was computed as follows:

Power(m) = log
∑
λ∈m

p(λ) (1)

where m stood for each sub-frequency band, p(λ) was the
power of frequency belonging to the band. Thus ultimately
we obtained a 96-dimension feature for each sample.

B. Deep Neural Network Based Brain Biometric Learning

1) Structure of the Neural Network for a Single Motor
Task: We attempted to classify with these features using a
fully-connected neural network. The neural network contains
an input layer, three hidden layers and an output layer. The
input layer has 96 neurons and the hidden layers have 1024,
512 and 20 neurons respectively, while the output layer has
10 neurons, which is the same as the quantity of the rats.

For each behavior, we gathered features of total rats as
input for neural network with respective labels. We employed
cross entropy loss function and Adam optimization to train
our network with learning rate 0.0001 after 40,000 iterations
of training. In addition, we used 80% of the samples as
training data and the remaining samples as test data.
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2) Structure of the Neural Network for Combination of
Multiple Tasks: To improve the identification performance,
we utilized the neural network for combination of multiple
tasks and adopted majority voting rule to determine the most
likely number of the rat. If the predicted numbers of three
neural networks were all distinct, then the vote was invalid
and a new vote using new signals began.

IV. RESULTS

To evaluate the effectiveness of the neural network for
combination of multiple tasks, we compared the classifica-
tion performance of the neural network for a single task
with that of the neural network for combination of multiple
tasks. In addition, to testify the reliability of the identification
performance over long time periods, we also analyzed the
classification accuracy during 7 days with the neural network
for a single task and the neural network for combination of
multiple tasks.

A. Identification Using a Single Motor Task and Combina-
tion of Multiple Tasks

As shown in Table I, the classification accuracy of three
neural networks for a single task is 82.08%, 82.30%, 83.10%
respectively. With the neural network for combination of
multiple tasks, the classification accuracy achieves 94.47%,
which is nearly 12% higher than that of neural network for a
single task. In addition, we also attempted to utilize a neural
network using total three motion data for identification and
the classification is 82.72%, which demonstrates that the
neural network for combination of multiple tasks is more
reliable and effective to identify the rats.

TABLE I
CLASSIFICATION ACCURACY USING NEURAL NETWORK FOR A SINGLE

MOTOR TASK AND COMBINATION OF MULTIPLE TASKS

Network Classification Accuracy
Single Grab Motion 82.08%
Single Press Motion 82.30%
Single Run Motion 83.10%

Three Mixed Motion 94.47%

B. Identification Over Long Time Periods

To testify the reliability of the identification performance
over long time periods, we utilized the samples of first
7 days as training data to train neural network and the
remaining samples of last 7 days as test data. We calculated
the classification accuracy of each day. As shown in Fig. 2,
the difference of the classification accuracy of the first few
days is relatively small with the neural network for a single
task and the neural network for combination of multiple
tasks. Nevertheless, the gap increases as time passed. At day
6 and day 7, the classification accuracy of the neural network
for combination of multiple tasks is at least 10% higher than
that of neural network for a single task, which shows that
the neural network for combination of multiple tasks is more
reliable and effective.

Fig. 2. Classification accuracy during 7 days with neural network for a
single motor task and combination of multiple tasks.

C. Identification Using Different Training Sizes

To recognize the ability of the neural network for com-
bination of multiple tasks using various number of samples,
we chose the number of training day from 1 to 7, and the
day after training days is chosen to be the test day. As shown
in Fig. 3, the classification accuracy of the neural network
for combination of multiple tasks is always higher than that
of neural network for a single task, which is more than 95%
throughout. In addition, when using only 1 training day, the
classification accuracy of the neural network for combination
of multiple tasks achieves 98.92%, which demonstrates that
the neural network for combination of multiple tasks is also
effective with small samples.

Fig. 3. Classification accuracy using different training days.

V. CONCLUSIONS

In this study, we identify 10 rats with implanted electrodes
using local field potential (LFP). With the neural network for
combination of multiple tasks, we achieve 94.47% classifi-
cation accuracy. Furthermore, we find that it is more reliable
using the neural network for combination of multiple tasks
over long time periods and the classification performance is
also acceptable. In future work, we intend to optimize the
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structure of the neural network and obtain higher identifica-
tion performance.
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