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Abstract— To effectively control the arm, motor cortical
neurons must produce complex patterns of activation that
vary with the position and orientation of the arm and reach
direction. In order to better understand how such a finely tuned
dynamical system could arise and what its basic organizing
principles are, we develop a model of the motor cortex as
a linear dynamical system with feedback coupled to a two-
joint model of the macaque arm. By optimizing the connections
between neural populations with respect to an objective function
that penalizes error between hand and target, as well as neural
and muscular energy use, we show that certain properties of
the motor cortex, such as muscle synergies, can naturally be
obtained. We also demonstrate that the optimization process
produces a stable neural system in which targets in the physical
space are mapped to attracting fixed points in the neural state
space. Finally, we show that this optimization process produces
neural units with complex spatial and temporal activation
patterns.

I. INTRODUCTION

There is significant debate over the encoding and organi-
zational principles that underlie cortical control of movement
in healthy brains [1]. Traditionally, strong experimentally
observed correlations have suggested that neural activity en-
codes directly observable variables like hand or arm position,
velocity, or acceleration within a fixed reference frame [2].
However, recent work suggests that the preferred direction of
M1 neurons tends to reflect activity in muscle space rather
than the extrinsic hand space [3]. This view is supported
by spike-triggered averaging of myographic activity, which
shows that many M1 neurons have direct connections to
motoneurons, both excitatory and inhibitory [4].

Most neurons that have such connections activate multiple
synergistic muscles [4]. Each muscle is represented across
many neurons with its own set of synergies, so that, even
within the same set of muscles, different populations of
neurons will be active depending on the initial posture and
temporal order of muscle activation [5]. These synergies
tend to be combinations of muscles that span multiple joints
[6]. How synergies are selected by neurons and how their
disruption in injured brains affects recovery are current topics
of research [7].

Beyond synergies, the larger picture of how the motor
cortex computes temporal patterns of muscle activation that
produce efficient trajectories for reach targets regardless of
their spatial position or movement direction is still unknown.
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One promising approach views the activity of the motor
cortex through the lens of dynamical systems theory, and
posits that computation is done as the neural dynamics
moves through the neural state space [8]. The way it moves
through this space is determined by the fixed points in the
space and their properties - whether they attract, repel, or
otherwise interact in different ways to produce the overall
”flow field” that moves the dynamics along [8]. The locations
and properties of these fixed points is in turn determined by
the highly tuned connections between neurons, which raises
the question of how the brain is able to find connections that
produce the desired dynamics.

One possibility is that the required connections can be
found through an optimization process. In nature, evolu-
tionary pressures over millions of years have shaped the
neural architecture of the primate motor cortex in a way that
optimizes survival. Over much shorter time scales, synaptic
plasticity and learning in young children allows them to
develop the fine grained motor skills needed for accurate
reaching.

In this paper we develop a simple model of the motor
cortex and the arm. In contrast to previous models such
as [9]–[11], we use a two-joint, physics-based model of
the arm, and the parameters of our cortical model are
optimized for general control of the arm rather than being
fit to experimental data for a particular task. We show
that certain properties of neurons, muscles, and the motor
cortex as a whole arise naturally as a result of optimizing
reach efficiency and accuracy over a broad set of reaches.
The optimized neuron to muscle connections exhibit basic
features of muscle synergies, and targets in the physical space
are mapped to attracting fixed points in the neural space in
a simple manner. Finally, we show that this optimization
process produces neural units with activation patterns that
can be either mono-, bi-, or triphasic in time, and that these
activation patterns depend on both the direction of reach as
well as the region in space in which the reach is occurring.

II. METHODS
A. Arm model

We constructed a two-dimensional, physics-based arm
model with two joints and four muscles. There are two
arm segments, whose masses and lengths were set to typical
values of the Rhesus macaque (Macaca mulatta), taken from
[12]. The joints consist of a shoulder and elbow joint, each of
which has its angular motion constrained to realistic ranges.

Joint torques in the arm model are produced by a set of
four uniarticular muscles - two shoulder muscles and two
elbow muscles, one flexor and one extensor in each case.
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Fig. 1. A) Example reaches of the arm and motor cortex model in two
different directions. The target is indicated by a blue star and the position
of the arm is shown every 50 ms. The red dots are plotted every 5 ms and
indicate the path of the hand. B) Top: Activity levels for each of the 10
neural units for the top reach shown in A). Bottom: Corresponding muscle
activity for the top reach shown in A)

Muscle moment arms were taken from [13]. For simplicity
and to improve simulation speed, muscles are assumed to
have linear dynamics of the form ṁ = 1

τm
(−m+ In) where m

is the muscle activation, τm = 0.02 sec is the activation (and
deactivation) time constant, as modeled in [13], [14], and
In is the neural input function which will be made explicit
below. For a given muscle activation level, the torque about
the spanned joint is calculated by multiplying the muscle
activation by the maximum muscle force and the moment
arm.

The kinematics and equations of motion for the arm were
derived using standard techniques (see i.e. [13], [14]). The
equations of motion will be denoted ṙ = R(r,m), where
r = [q1 q2 q̇1 q̇2] is the vector of joint angles and angular
velocities.

B. Neural model

The arm model is controlled using a linear dynamical
system with feedback. The set of neural units has some
firing rate at time t denoted by the vector x(t), and all
units receive input from other neural units with weights
given by the connectivity matrix A. They also receive a bias
input B0, target input B1u1, where u1 is the two-dimensional
target vector and B1 is a matrix mapping the target input to
the neural state space, hand position feedback of the form
C1v1(r), where v1(r) is the position of the hand at any given
time, and muscle feedback of the form C2m.

The neural model is coupled to the muscle dynamics via
the neural input function In = σ(D0 +D1x) where D1 is the

neural unit to muscle connectivity matrix, D0 is a bias term,
and σ(x) = 1/(1+ e−x) maps the input to between 0 and 1.
In summary, the dynamics of our coupled motor cortex and
arm model are given by:

ẋ = Ax+B0 +B1u1 +C1v1(r)+C2m

ṁ =
1

τm
(−m+σ(D0 +D1x))

ṙ = R(r,m)

(1)

Because each unit in our model has a smooth output that
represents a mean-subtracted firing rate and can have both
positive and negative connections to other units, we consider
the units as representing populations of neurons with similar
sets of inputs and activation patterns. We therefore use the
terms ”units” or ”neural units” to refer to them.

C. Optimization

Given a training set of S samples consisting of start-
ing points and targets spread uniformly over the reach-
able space and a time window of length T in which
to make each of the reaches, we optimized the matrices
A, B0, B1, C1, C2, D0, D1 simultaneously in our model
with respect to the following objective function:

S

∑
i=0

T∫
0

‖pos(r)−u1,i‖2 +β2 ‖x‖2 +β3 ‖m‖2 dt (2)

where pos(r) is the time-varying position of the hand and
u1,i is the target for sample i. The first term in the integral
measures the accuracy of the reach, the second term ‖x‖2

measures the amount of neural activity required during the
reach, and the third term ‖m‖2 measures the amount of
muscular energy consumed. The factors β2 and β3 determine
the relative importance of minimizing each of these three
terms. Note that while the target u1,i is constant during a
given reach, the hand and muscle feedback are continuously
changing as the arm moves, resulting in time-varying motor
commands due to this feedback and the connections between
neural units. The optimization was accomplished using Pon-
tryagin’s adjoint sensitivity method [15].

III. RESULTS

We ran the above optimization for models ranging from
4 to 40 units, T = 1 sec, S = 1000 samples, and a wide
range of penalty parameters. We found that as long as
the number of units is approximately 10 or more and β2
and β3 are kept below about 5× 10−2/N and 5× 10−3,
respectively (where N is the number of units), the results
are consistent across different numbers of neurons or values
of the penalty parameters. In this paper we will show neural
activity and connection patterns for a 10 neuron model which
was optimized using β2 = 10−3 and β3 = 2.5×10−3. Figure
1 shows two example reaches using the optimized model,
along with associated neural population and muscle activity.
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Fig. 2. A) Matrix of connections between neural units. Entry i,j indicates
the connection strength between unit i and unit j. B) Matrix of connections
between neural units and muscles. Column i indicates the connection
strength between unit i and each of the four muscles, with 0 = shoulder
flexor, 1 = shoulder extensor, 2 = elbow flexor, 3 = elbow extensor. C) Set
of reach targets for which the steady state neural activity was calculated.
Coloration is arbitrary and for reference to D). D) Projection of steady state
neural activity on to first two PCA components for the set of targets shown
in C), with each point in PCA space colored according to the corresponding
target presented in C), showing that there is no mixing.

A. Neural unit connections

The connections across neural units is shown by the
connectivity matrix in Figure 2 A). Entry i, j indicates the
amount that unit i weights input from unit j. Eight of
the 10 eigenvalues of this connectivity matrix are complex
conjugate pairs, which give rise to oscillatory modes in the
neural activity at frequencies of 4.04 Hz, 2.08 Hz, 1.74
Hz, and 0.24 Hz. The real parts of all the eigenvalues are
negative after optimization, a property whose consequences
we will discuss further in section C). Reaches typically
take between 0.2 and 0.5 seconds, and consist of an initial
application of force which produces an acceleration of the
hand, followed by a deceleration phase starting from roughly
midway through the reach, with perhaps some additional
force at the end required for correction or to hold the arm
position. Thus, the oscillatory frequencies we observe in our
connection matrix are in line with the required biphasic or
triphasic modulation of the muscle within a few tenths of a
second needed to produce efficient trajectories.

B. Neural unit to muscle connections

The connections between neural units and muscles after
optimization are shown in Figure 2 B). Column i indicates
the connection strength between unit i and each of the four
muscles. A negative connection means that positive activity
by the neural unit drives the muscle toward deactivation,
while negative activity activates it (and vice versa for positive
connections). We note that the optimized neuron to muscle
connections exhibit basic features of muscle synergies in that

the connections tend to span multiple joints - most units
have positive connections to one of the shoulder muscles and
one of the elbow muscles and negative connections to the
opposing muscles, shown by two red squares and two blue
squares in each column. Antagonistic muscles are almost
never coactivated by the same neuron; either both muscles
are deactivated or one muscle is activated while the other is
simultaneously deactivated, resulting in efficient movement
without unnecessary muscle activation and wasted energy.

C. Fixed points in the neural state space

To investigate how targets are mapped into the space
of neural activity, we note that since the real parts of all
the eigenvalues of the connectivity matrix are negative, the
neural dynamics are strictly stable and every input target
produces a single attracting fixed point in the neural state
space. This fixed point does not depend on the initial
conditions of the system such as the starting position of the
hand. In Figure 2 C), we plot a set of 1000 target positions
within the reachable space of the arm (as usual the shoulder,
not shown, is at (0,0)). For each of these target positions we
calculate the corresponding fixed point in the neural state
space. Since these points are 10 dimensional, we then apply
principle components analysis to project these fixed points
into a 2 dimensional subspace that we can visualize. The
result is shown in Figure 2 D), with the color of each fixed
point corresponding to the color of the target from which it
was calculated in C). As we can see, the targets are mapped
into the fixed points of the neural state space with almost
no distortion or mixing. Mathematically, this is thanks to
the linearity of the motor cortex model and the fact that
the sigmoid in the muscle activation equation provides only
a mild non-linearity. As we described above, each of these
fixed points is an attractor in the neural state space, and thus
at a high level we can describe the operation of our motor
cortex model as mapping targets to points in the neural state
space and using attractor dynamics to move the arm toward
the target.

D. Neural activation fields

In order to understand in detail what aspects of movement
each neural unit is coding for, we consider 3 different factors
in any given reach: 1) the region of space in which the reach
occurs, 2) the direction of the reach, and 3) the temporal
course of activation. We subdivide the reachable area into
4 regions and place a target at the center of each region.
For each target, we record neural activity in our model as
it reaches for the target, starting from a ring of 32 initial
hand positions located 7 cm from the target (or 5 cm in
the case of the lower-most region due to the shape of the
reachable space). We then calculate the fraction of the total
neural activity contributed by each neural unit at each point
in time by taking the squared valued of the unit’s activity
and dividing by the sum of squares of the activity of all the
units in the model. The result is shown in Figure 3 A). In
each plot, the physical hand space is shown as in Figure 1,
with the shoulder (not shown) at (0,0).
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Fig. 3. Relative contribution of neural units to A) the total neural activity and B) the total muscle input for each muscle. In each plot, the physical hand
space is shown as in Figure 1. There are 4 targets, one at the center of each of the circles. For each reach from a starting point on the edge of a circle to
the center, we measure the fraction of neural activity (A) or muscle activity (B) that a given unit contributes to the total at 50 ms intervals, and color the
corresponding point along the straight line from the starting point on the outside edge to the target in the middle accordingly.

We see that the activation field for a given neuron in our
model can vary quite dramatically depending on the three
factors described above. For example, unit 3 is active early
in the reach (indicated by the lighter colored ring around the
edges of most of its circles), while unit 4 is active later in
the reach for reaches above the head (indicated by the light
colored centers of the top two circles) but earlier in the reach
for reaches at shoulder level or below.

In Figure 3 B), we plot the fraction of muscle input that
is contributed by each unit for each of the 4 muscles, as
measured by the squared fraction of Dx that comes from each
unit, divided by the sum of squares from all the units. The
sign indicates whether the neuron contributes positively (thus
activating the muscle) or negatively (thus deactivating it) at
any given time point. The overall plotting method remains
the same as in A). We again see that the contribution, this
time to muscle input, can vary significantly over time, region,
and reach direction. For example, with unit 3 we see an
interesting biphasic change from activation of the shoulder
extensor early in the reach to deactivation towards the end of
the reach for reaches below the shoulder, while the pattern
is reversed in reaches above the shoulder. Unit 4 has an
even more complex pattern in the shoulder flexor of triphasic
activation, then deactivation, followed by activation again,
and only for upwards reach directions above the head.

IV. CONCLUSIONS

In this paper, we have shown that a relatively simple model
of motor cortex dynamics is capable of controlling an arm via
attractor dynamics that naturally arise through optimization.
Further, our simulated motor populations revealed complex
temporal and spatial activation fields across the entire reach
space, something not seen in typical experiments in which
all movement is done within a small task region. We believe

that further study of these patterns may help us understand
how the motor cortex organizes space over different scales.
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