
  


 

Abstract— Brain-machine interfaces (BMIs) enable people 

with disabilities to control external devices with their motor 

intentions through a decoder. Compared with supervised 

learning, reinforcement learning (RL) is more promising for the 

disabled because it can assist them to learn without actual limb 

movement. Current RL decoders deal with tasks with immediate 

reward delivery. But for tasks where the reward is only given by 

the end of the trial, existing RL methods may take a long time to 

train and are prone to becoming trapped in the local minima. In 

this paper, we propose to embed temporal difference method 

(TD) into Quantized Attention-Gated Kernel Reinforcement 

Learning (QAGKRL) to solve this temporal credit assignment 

problem. This algorithm utilizes a kernel network to ensure the 

global linear structure and adopts a softmax policy to efficiently 

explore the state-action mapping through TD error. We simulate 

a center-out task where the agent needs several steps to first 

reach a periphery target and then return to the center to get the 

external reward. Our proposed algorithm is tested on simulated 

data and compared with two state-of-the-art models. We find 

that introducing the TD method to QAGKRL achieves a 

prediction accuracy of 𝟗𝟔. 𝟐% ± 𝟎. 𝟕𝟕% (mean ± std), which is 

significantly better the other two methods. 

 
Clinical Relevance—This paper proposes a novel kernel 

temporal difference RL method for the multi-step task with 

delayed reward delivery, which potentially enables BMI online 

continuous decoding.  

I. INTRODUCTION 

Brain-machine interfaces (BMIs) [1] enable paralyzed 

people to control external devices by interpreting their motor 

intentions and translating them into commands with a decoder 

[2]. Since reinforcement learning (RL) can train the mapping 

from neural activity to movements without an explicit signal, 

instead relying on a reward from the environment, it is a more 

promising way for disabled people to learn to control a 

prosthesis through trial and error. Several RL methods have 

been proposed to learn the state-action mapping for BMIs [3]–

[6]. However, existing algorithms can only deal with tasks 

with immediate reward delivery. For a complex experiment 
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design where subjects need to take several steps to accomplish 

the task but are only rewarded or punished at the end of the 

trial, current RL algorithms cannot assign the reward over 

time to learn the task. Incorporating a temporal difference 

method into RL is one the options to solve such a temporal 

credit assignment problem.  

Temporal difference learning, especially TD (𝜆), provides 

an efficient learning procedure for RL. Brosch et al. [7] 

applied a TD Sarsa-style [8] learning signal to AGREL to 

tackle delayed rewards. However, this Sarsa-style AGREL 

(SAGREL) is as sensitive to the initializations as AGREL.  

Moreover, one-step Sarsa method can barely handle the credit 

assignment over time when the task becomes complex and 

neural data involves noise, thus the algorithm may take a long 

time to converge [9]. Bae et al. introduced kernel TD(𝜆) to Q-

learning (Q-KTD) for neural decoding in the RLBMI 

framework [10], [11]. It utilizes a kernel network to achieve a 

global linear structure but still uses an instant reward for 

multi-step task training. Moreover, the 𝜀 -greedy policy is 

applied to select actions, which may cause it to become 

trapped in the local minima over time without immediate 

reward delivery. This policy exploits current knowledge to 

take an action associated with the maximal reward with 

possibility 1 − 𝜀 (𝜀 is a small constant, e.g., 0.01), and all the 

other actions are chosen with a very small, uniform and 

independent possibility 𝜀. In this way, some actions with a 

lower value may seldom be explored, even if they are actually 

better in the later training sessions. To achieve a fast and 

stable decoding, we adopt Quantized Attention-Gated Kernel 

Reinforcement Learning (QAGKRL) [5], which is more 

efficient to learn the neural state-action mapping with a 

softmax policy, to incorporate with TD (𝜆)  for the multi-step 

task. 

In this paper, we propose to embed a temporal difference 

method, namely TD (𝜆), into QAGKRL (TD-QAGKRL) to 

assign the credit over time to learn the state-action mapping in 

the multi-step task. We simulate a center-out task where the 
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subject needs to first reach the target and then go back to the 

center to accomplish the task to get the external reward.  Here, 

we apply TD-QAGKRL as a decoder to translate simulated 

M1 signals into movements. The reward is only given at the 

end of the trial and the decoder needs to backpropagate the 

reward to the previous steps to learn the mapping. The 

decoding performance of TD-QAGKRL is compared with 

those of two existing methods (SAGREL and Q-KTD) based 

on the correctness of the ratio of the predicted action sequence 

with regard to the ground truth. The rest of the paper is 

organized as follows: data simulation and the experiment 

diagram are presented in Section IIa; the details of the TD-

QAGKRL algorithm are explained in Section IIb; Section III 

visualizes the simulation data structure and demonstrates the 

training and testing results for the three algorithms; in the last 

section, Section IV, conclusions are presented. 

II. METHODS 

A. Simulation design and data generation 

 

Figure 1. (a) Experiment diagram. (b) x and y positions of the trajectory in 
the four trials. 

 

We simulate a center-out experiment as [12], which is 

commonly used in the BMI paradigm, to test the proposed 

temporal difference-based RL algorithms. In this task, a 

cursor will appear in the center of the screen at the beginning 

of each trial. A trial is successful if the subject first moves the 

cursor to one of four periphery targets and then back to the 

center within the predefined steps. Given the features of the 

trajectory, reaching actions are categorized into four classes: 

up down, right and left. We form the trials by arranging 

actions in a temporal sequence. The four actions are 

represented by triangles with different colors and the targets 

are labelled as grey circles in Fig.1 (a). Fig. 1 (b) shows the x 

and y positions of the 2-D trajectories in the four trials, which 

are shown in the sequence of [T1, T2, T3, T4], respectively.  

To generate simulated spikes of the artificial neurons, we 

adopt the following exponential approximation function[13]: 

𝑓(θ) = 𝑏 + 𝑎 𝑒𝑥𝑝(𝑘 𝑐𝑜𝑠(θ − 𝜇)) + 𝑛 ,          (1) 

where 𝜃 is the cursor movement angle, b, a and  k denote the 

background firing, height and shape of the tuning function 

respectively, 𝜇 is the preferred direction of a neuron, and n is 

the Gaussian noise. We define b=0, a=1.6, and k=1 in the 

simulation. We generate four neurons with preferred 

directions 𝜇=0◦, 90◦, 180◦ and 270◦, which are the same as the 

four respective targets. Gaussian noise n is explored to make 

the simulated data mimic the neural data in real sensoria. The 

simulated data are generated every 100 ms.  

B.  Action decoding and parameter updating for TD-

QAGKRL 

 
Figure 2. The structure of TD-QAGKRL. 

 

    The structure of TD-QAGKRL is shown in Fig. 2. The 

neural input 𝑢𝑡 ∈ 𝑅1×5 (four simulated neurons with a bias) 
is transformed to a Reproducing Kernel Hilbert Space 

(RKHS) by a kernel method, 𝜅(𝑢𝑡 , 𝑢𝑗) =< 𝜙(𝑢𝑡), 𝜙(𝑢𝑗) >, 

which is commonly used as a Gaussian kernel:  

𝜅(𝑢𝑡 , 𝑢𝑗) = exp (−
∥𝑢𝑡−𝑢𝑗∥ 2

2𝜎2 ) ,                     (2) 

where 𝜎 is the kernel size, which decides the flatness of the 

Gaussian kernel. Then the action value is computed by linear 

combination with the weights as follows: 

𝑄𝑘(𝑢𝑡) = ∑ 𝑤𝑘,𝑗⟨𝜙(𝑢𝑡), 𝜙(𝑢𝑗)⟩𝑡−1
𝑗=1 = ∑ 𝑤𝑘,𝑗

𝑡−1
𝑗=1 𝜅(𝑢𝑡, 𝑢𝑗), (3) 

where 𝑤𝑘,𝑗  is the coefficient between the jth Gaussian kernel 

center in the RKHS and the kth action. 

    An RBF network has an inherently growing structure as 

it allocates a new center for each coming data sample, which 

causes a linearly growing computational complexity. TD-

QAGKRL adopts an effective quantization approach to 

decrease the number of kernel centers [5]. We explore an 
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optimal quantization threshold 𝜉
𝑈

 according to the 

distribution of the Euclidean distances between the pairs of 

input vectors. The output action values can be calculated as 

follows: 

𝑄𝑘(𝑢𝑡) = ∑ 𝑤𝑘,𝑗

|𝐶𝑡−1|

𝑗=1

𝜅(𝑢𝑡, 𝑢𝑗
𝑞

) 

 

(4) 

𝑑𝑚𝑖𝑛
𝐶 = min

1≤𝑘≤|𝐶𝑗−1|
∥ 𝑢𝑗 − 𝐶𝑘 ∥, (5) 

where |𝐶𝑡−1| is the final size of the centers, including input 

patterns of the preceding (t −1) samples and 𝑢𝑗
𝑞

 is the jth 

center after quantization, whose minimal distance 𝑑min
𝐶  in 

(5) from all the previous centers is larger than 𝜉𝑈 .          

       After the action values are calculated, we will 

probabilistically choose the action 𝑎𝑡
∗

 based on the softmax 

policy, defined as 𝑃(𝑍𝑎𝑡
= 1) =

exp (𝑄𝑎𝑡(𝑢𝑡)/𝜏)

∑ exp (𝑄𝑎𝑡
′(𝑢𝑡)/𝜏)𝐾

𝑎𝑡
′=1

, where 

𝜏 is the temperature parameter and K is the action set (four 

actions). If the decoded action sequence successfully reaches 

the goal of the task, the decoder will get a reward 𝑟 =1. 

Otherwise, it receives no reward 𝑟 = 0. For this multi-step 

task, the reward is only given at the end of the trial, and no 

intermediate step will receive any external reward. 

      The TD-QAGKRL is trained using temporal difference 

error via backpropagation [3]. The TD error in (6) includes 

the actual reward 𝑟𝑡+1, the future rewards 𝑄(𝑢𝑡+1, 𝑎𝑡+1) that 

are expected to be obtained and the expected reward of the 

state-action pair 𝑄(𝑢𝑡 , 𝑎𝑡): 

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑄(𝑢𝑡+1, 𝑎𝑡+1) − 𝑄(𝑢𝑡 , 𝑎𝑡) 
(6) 

𝛿𝑡
𝜆 = 𝛿𝑡 + ∑ (𝛾𝜆)𝑛𝛿𝑡+𝑛

𝑇−1

𝑛=1
 , 

(7) 

where 𝜆 is the eligibility trace-decay parameter and 𝛾 is the 

discount factor. A global error-based expansive function 

𝑔(𝛿) is defined to enhance the learning when an unexpected 

reward comes, which is shown as 

𝑔(𝛿𝑡
𝜆) = {

𝛿𝑡
𝜆

1 − 𝛿𝑡
𝜆 + 𝜖 

,

𝛿𝑡
𝜆 ,              

 
0 ≤ 𝛿𝑡

𝜆 ≤ 1 
 

(8) 

𝛿𝑡
𝜆 < 0 𝑜𝑟 𝛿𝑡

𝜆 > 1, 

where 𝜀 = 1e-4, here, a small constant to eliminate the 

singularity when 𝛿𝑡
𝜆 = 1. 

        If the distance of 𝑢𝑡  from all the previous centers is 

larger than 𝜉𝑈 , we assign a new kernel center to this input 𝑢𝑡 

with the weight  𝑤𝑘,𝑡. If the distance is smaller than 𝜉𝑈, the 

centers remain unchanged, and 𝑢𝑡  is quantized to the closest 

center m. We locally update the center’s coefficient 

accordingly, as follows: 

{
𝑤𝑘,𝑡 = 𝜂𝑔(𝛿𝑡

𝜆),                 

𝑤𝑘,𝑚 = 𝑤𝑘,𝑚 + 𝜂𝑔(𝛿𝑡
𝜆),

 
t: new center index 

m: closest center index. 

 

(9) 

III. RESULTS 

      First, we will visualize the simulated neural data structure 

obtained by principal component analysis (PCA) and show 

the decoding results and detailed analysis of the three models 

respectively.    

 
Figure 3. Neural patterns of four actions visualized by three main 
components of PCA. 

 

      In Fig. 3, we generate the spike data of four actions based 

on the tuning function in (1). Then we visualize the neural 

structure with the top three main components of PCA. We can 

see that the four clusters are separable, though with some 

overlaps, which imitates the real M1 neural data. 

 

 
Figure 4. The training curves of the three methods. 

 

     We design the experiment with two steps to reach the 

peripheral targets and two steps to go back to the center, as 

described in Fig. 1. In other words, the subjects need four 

steps to finish one trial to get an external reward. We generate 

input data for the four respective directions and combine them 

in one trial. We shuffle 10000 trials for each initialization (70% 

for training, 30% for testing) and repeat the process 10 times. 

The input is the simulated neural data of the designed 

trajectory, and the output is the action sequence. The best 

parameters are explored for the three algorithms separately. 

We set the hidden number =10, discount factor 𝛾1 = 0.99, 

and learning rate 𝜂1 = 0.01 for SAGREL; kernel size 𝜎2 = 3, 

learning rate 𝜂2 = 0.01 , quantization threshold 𝜉2 = 0.2 , 

discount factor 𝛾2 = 0.99 and temperature parameter 𝜏2 =
0.1 for TD-QAGKRL; and kernel size 𝜎3 = 3.5, learning rate 
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𝜂3 = 0.01, quantization threshold 𝜉3 = 0.2, discount factor 

𝛾3 = 0.99 and 𝜀 = 0.05 for Q-KTD. The learning curves of 

the three methods are shown in Fig. 4. The x-axis is the 

training epoch (each contains 50 trials), and the y-axis is the 

decoding accuracy. The red, green and blue shaded curves 

(solid line shows mean value, and shaded area stands for the 

variance) represent TD-QAGKRL, SAGREL and Q-KTD, 

respectively. We can see that SAGREL cannot converge due 

to its local structure, while Q-KTD obtains a high 

performance but sometimes is trapped in the local minima 

when assigning credit over time due to its action-selection 

policy. It chooses an action with the maximal reward with a 

large possibility, and hardly explores the other actions, which 

may be better in the later training sessions. In comparison, 

TD-QAGKRL converges faster and has a higher convergence 

rate than Q-KTD, which is mainly contributed by the softmax 

policy and the expansive function.   
 

 
Figure 5. Corresponding action values of SAGREL, TD-QAGKRL and 

Q-KTD in the later training session. 
 

      Fig. 5 shows the action values of the four actions for the 

three methods in the later training session (which includes 5 

trials, going up and then down). The x-axis is the training time, 

and y-axis is the action value.  The brown stripes on the grey 

line indicate the start of each trial. As we can see from Fig. 

5(a), SAGREL cannot distinguish between four actions after 

long-term training, while Fig. 5(b) shows that TD-QAGKRL 

can perfectly discriminate these actions and choose the 

correct action to complete the task. Q-KTD, meanwhile, can 

differentiate the actions well for most of the trials when it has 

a good initialization. But, compared with TD-QAGKRL, the 

actions are less discriminated, as indicated by the red stars in 

Fig. 5(c), and thus Q-KTD is highly likely to choose the 

wrong action. With the well-trained parameters, we test three 

algorithms on the  data that never appeared in the training 

session. We conduct the testing on ten initializations (each 

containing 3000 points for testing). TD-GAGKRL (96.2% ±
0.77%) performs statistically better than Q-KTD (57.4% ±
40.5%) (pair-wise Student’s t-test, p<0.05).  

IV. CONCLUSION AND DISCUSSION 

       Reinforcement learning-based decoders have been 

utilized in BMIs to enable disabled people to control external 

devices, guided by a reward. However, when the task 

becomes more complex, it is difficult and time-consuming to 

train the decoder with the reward by the end of the trial. Here, 

we propose to embed temporal difference into the QAGKRL 

algorithm to ensure its performance. Compared with existing 

methods, our TD-QAGKRL algorithm can achieve better 

performance (96.2% ± 0.77%) and converges faster, with a 

smaller variance on simulated neural data. In future work, we 

plan to test TD-QAGKRL on in vivo data and extend this 

work in an online manner for clinical applications. 
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