

Abstract— Brain-machine interfaces (BMIs) enable people

with disabilities to control external devices with their motor

intentions through a decoder. Compared with supervised

learning, reinforcement learning (RL) is more promising for the

disabled because it can assist them to learn without actual limb

movement. Current RL decoders deal with tasks with immediate

reward delivery. But for tasks where the reward is only given by

the end of the trial, existing RL methods may take a long time to

train and are prone to becoming trapped in the local minima. In

this paper, we propose to embed temporal difference method

(TD) into Quantized Attention-Gated Kernel Reinforcement

Learning (QAGKRL) to solve this temporal credit assignment

problem. This algorithm utilizes a kernel network to ensure the

global linear structure and adopts a softmax policy to efficiently

explore the state-action mapping through TD error. We simulate

a center-out task where the agent needs several steps to first

reach a periphery target and then return to the center to get the

external reward. Our proposed algorithm is tested on simulated

data and compared with two state-of-the-art models. We find

that introducing the TD method to QAGKRL achieves a

prediction accuracy of 𝟗𝟔. 𝟐% ± 𝟎. 𝟕𝟕% (mean ± std), which is

significantly better the other two methods.

Clinical Relevance—This paper proposes a novel kernel

temporal difference RL method for the multi-step task with

delayed reward delivery, which potentially enables BMI online

continuous decoding.

I. INTRODUCTION

Brain-machine interfaces (BMIs) [1] enable paralyzed

people to control external devices by interpreting their motor

intentions and translating them into commands with a decoder

[2]. Since reinforcement learning (RL) can train the mapping

from neural activity to movements without an explicit signal,

instead relying on a reward from the environment, it is a more

promising way for disabled people to learn to control a

prosthesis through trial and error. Several RL methods have

been proposed to learn the state-action mapping for BMIs [3]–

[6]. However, existing algorithms can only deal with tasks

with immediate reward delivery. For a complex experiment

* Research supported by grants from Shenzhen-Hong Kong Innovation Circle
(Category D) (No. SGDX2019081623021543), the National Natural Science

Foundation of China (No.61836003), Sponsorship Scheme for Targeted

Strategic Partnership (FP902), special research support from Chao Hoi Shuen
Foundation, Seed fund of the Big Data for Bio-Intelligence Laboratory

(Z0428) from HKUST.

Xiang Shen is with the with Department of Electronic and Computer
Engineering Hong Kong University of Science and Technology, Hong Kong

(e-mail: xshenai@ connect.ust.hk).

design where subjects need to take several steps to accomplish

the task but are only rewarded or punished at the end of the

trial, current RL algorithms cannot assign the reward over

time to learn the task. Incorporating a temporal difference

method into RL is one the options to solve such a temporal

credit assignment problem.

Temporal difference learning, especially TD (𝜆), provides

an efficient learning procedure for RL. Brosch et al. [7]

applied a TD Sarsa-style [8] learning signal to AGREL to

tackle delayed rewards. However, this Sarsa-style AGREL

(SAGREL) is as sensitive to the initializations as AGREL.

Moreover, one-step Sarsa method can barely handle the credit

assignment over time when the task becomes complex and

neural data involves noise, thus the algorithm may take a long

time to converge [9]. Bae et al. introduced kernel TD(𝜆) to Q-

learning (Q-KTD) for neural decoding in the RLBMI

framework [10], [11]. It utilizes a kernel network to achieve a

global linear structure but still uses an instant reward for

multi-step task training. Moreover, the 𝜀 -greedy policy is

applied to select actions, which may cause it to become

trapped in the local minima over time without immediate

reward delivery. This policy exploits current knowledge to

take an action associated with the maximal reward with

possibility 1 − 𝜀 (𝜀 is a small constant, e.g., 0.01), and all the

other actions are chosen with a very small, uniform and

independent possibility 𝜀. In this way, some actions with a

lower value may seldom be explored, even if they are actually

better in the later training sessions. To achieve a fast and

stable decoding, we adopt Quantized Attention-Gated Kernel

Reinforcement Learning (QAGKRL) [5], which is more

efficient to learn the neural state-action mapping with a

softmax policy, to incorporate with TD (𝜆) for the multi-step

task.

In this paper, we propose to embed a temporal difference

method, namely TD (𝜆), into QAGKRL (TD-QAGKRL) to

assign the credit over time to learn the state-action mapping in

the multi-step task. We simulate a center-out task where the

Xiang Zhang, and Yiwen Wang are with the Department of Electronic and
Computer Engineering, Yiwen Wang is also with the Department of

Chemical and Biological Engineering, the Hong Kong University of Science

and Technology, Hong Kong. Yiwen Wang serves as the corresponding
author (phone: 852-2358-7053; fax: 852-2358-1485; e-mail:

eewangyw@ust.hk).

Kernel Temporal Difference based Reinforcement Learning for

Brain Machine Interfaces*

Xiang Shen, Student Member, IEEE, Xiang Zhang, Student Member, IEEE, and Yiwen Wang, Senior

Member, IEEE

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 6721

subject needs to first reach the target and then go back to the

center to accomplish the task to get the external reward. Here,

we apply TD-QAGKRL as a decoder to translate simulated

M1 signals into movements. The reward is only given at the

end of the trial and the decoder needs to backpropagate the

reward to the previous steps to learn the mapping. The

decoding performance of TD-QAGKRL is compared with

those of two existing methods (SAGREL and Q-KTD) based

on the correctness of the ratio of the predicted action sequence

with regard to the ground truth. The rest of the paper is

organized as follows: data simulation and the experiment

diagram are presented in Section IIa; the details of the TD-

QAGKRL algorithm are explained in Section IIb; Section III

visualizes the simulation data structure and demonstrates the

training and testing results for the three algorithms; in the last

section, Section IV, conclusions are presented.

II. METHODS

A. Simulation design and data generation

Figure 1. (a) Experiment diagram. (b) x and y positions of the trajectory in
the four trials.

We simulate a center-out experiment as [12], which is

commonly used in the BMI paradigm, to test the proposed

temporal difference-based RL algorithms. In this task, a

cursor will appear in the center of the screen at the beginning

of each trial. A trial is successful if the subject first moves the

cursor to one of four periphery targets and then back to the

center within the predefined steps. Given the features of the

trajectory, reaching actions are categorized into four classes:

up down, right and left. We form the trials by arranging

actions in a temporal sequence. The four actions are

represented by triangles with different colors and the targets

are labelled as grey circles in Fig.1 (a). Fig. 1 (b) shows the x

and y positions of the 2-D trajectories in the four trials, which

are shown in the sequence of [T1, T2, T3, T4], respectively.

To generate simulated spikes of the artificial neurons, we

adopt the following exponential approximation function[13]:

𝑓(θ) = 𝑏 + 𝑎 𝑒𝑥𝑝(𝑘 𝑐𝑜𝑠(θ − 𝜇)) + 𝑛 , (1)

where 𝜃 is the cursor movement angle, b, a and k denote the

background firing, height and shape of the tuning function

respectively, 𝜇 is the preferred direction of a neuron, and n is

the Gaussian noise. We define b=0, a=1.6, and k=1 in the

simulation. We generate four neurons with preferred

directions 𝜇=0◦, 90◦, 180◦ and 270◦, which are the same as the

four respective targets. Gaussian noise n is explored to make

the simulated data mimic the neural data in real sensoria. The

simulated data are generated every 100 ms.

B. Action decoding and parameter updating for TD-

QAGKRL

Figure 2. The structure of TD-QAGKRL.

 The structure of TD-QAGKRL is shown in Fig. 2. The

neural input 𝑢𝑡 ∈ 𝑅1×5 (four simulated neurons with a bias)
is transformed to a Reproducing Kernel Hilbert Space

(RKHS) by a kernel method, 𝜅(𝑢𝑡 , 𝑢𝑗) =< 𝜙(𝑢𝑡), 𝜙(𝑢𝑗) >,

which is commonly used as a Gaussian kernel:

𝜅(𝑢𝑡 , 𝑢𝑗) = exp (−
∥𝑢𝑡−𝑢𝑗∥ 2

2𝜎2) , (2)

where 𝜎 is the kernel size, which decides the flatness of the

Gaussian kernel. Then the action value is computed by linear

combination with the weights as follows:

𝑄𝑘(𝑢𝑡) = ∑ 𝑤𝑘,𝑗⟨𝜙(𝑢𝑡), 𝜙(𝑢𝑗)⟩𝑡−1
𝑗=1 = ∑ 𝑤𝑘,𝑗

𝑡−1
𝑗=1 𝜅(𝑢𝑡, 𝑢𝑗), (3)

where 𝑤𝑘,𝑗 is the coefficient between the jth Gaussian kernel

center in the RKHS and the kth action.

 An RBF network has an inherently growing structure as

it allocates a new center for each coming data sample, which

causes a linearly growing computational complexity. TD-

QAGKRL adopts an effective quantization approach to

decrease the number of kernel centers [5]. We explore an

-2

-1

0

1

2

10 12 14 16 18

-2

-1

0

1

2

T1

T2

T3

T4

y
-p

o
si

ti
o

n
x

-p
o
si

ti
o

n

x-position

y
-p

o
si

ti
o

n

Center

T2

T2

0 2 4 6 8

10 12 14 16 180 2 4 6 8

steps

-2 -1 0 1 2

2

1

0

-1

-2

(a)

(b)

up

down

left

right

T2

T3

T4

T1

6722

optimal quantization threshold 𝜉
𝑈

 according to the

distribution of the Euclidean distances between the pairs of

input vectors. The output action values can be calculated as

follows:

𝑄𝑘(𝑢𝑡) = ∑ 𝑤𝑘,𝑗

|𝐶𝑡−1|

𝑗=1

𝜅(𝑢𝑡, 𝑢𝑗
𝑞

)

(4)

𝑑𝑚𝑖𝑛
𝐶 = min

1≤𝑘≤|𝐶𝑗−1|
∥ 𝑢𝑗 − 𝐶𝑘 ∥, (5)

where |𝐶𝑡−1| is the final size of the centers, including input

patterns of the preceding (t −1) samples and 𝑢𝑗
𝑞

 is the jth

center after quantization, whose minimal distance 𝑑min
𝐶 in

(5) from all the previous centers is larger than 𝜉𝑈 .

 After the action values are calculated, we will

probabilistically choose the action 𝑎𝑡
∗

 based on the softmax

policy, defined as 𝑃(𝑍𝑎𝑡
= 1) =

exp (𝑄𝑎𝑡(𝑢𝑡)/𝜏)

∑ exp (𝑄𝑎𝑡
′(𝑢𝑡)/𝜏)𝐾

𝑎𝑡
′=1

, where

𝜏 is the temperature parameter and K is the action set (four

actions). If the decoded action sequence successfully reaches

the goal of the task, the decoder will get a reward 𝑟 =1.

Otherwise, it receives no reward 𝑟 = 0. For this multi-step

task, the reward is only given at the end of the trial, and no

intermediate step will receive any external reward.

 The TD-QAGKRL is trained using temporal difference

error via backpropagation [3]. The TD error in (6) includes

the actual reward 𝑟𝑡+1, the future rewards 𝑄(𝑢𝑡+1, 𝑎𝑡+1) that

are expected to be obtained and the expected reward of the

state-action pair 𝑄(𝑢𝑡 , 𝑎𝑡):

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑄(𝑢𝑡+1, 𝑎𝑡+1) − 𝑄(𝑢𝑡 , 𝑎𝑡)
(6)

𝛿𝑡
𝜆 = 𝛿𝑡 + ∑ (𝛾𝜆)𝑛𝛿𝑡+𝑛

𝑇−1

𝑛=1
 ,

(7)

where 𝜆 is the eligibility trace-decay parameter and 𝛾 is the

discount factor. A global error-based expansive function

𝑔(𝛿) is defined to enhance the learning when an unexpected

reward comes, which is shown as

𝑔(𝛿𝑡
𝜆) = {

𝛿𝑡
𝜆

1 − 𝛿𝑡
𝜆 + 𝜖

,

𝛿𝑡
𝜆 ,

0 ≤ 𝛿𝑡

𝜆 ≤ 1

(8)

𝛿𝑡
𝜆 < 0 𝑜𝑟 𝛿𝑡

𝜆 > 1,

where 𝜀 = 1e-4, here, a small constant to eliminate the

singularity when 𝛿𝑡
𝜆 = 1.

 If the distance of 𝑢𝑡 from all the previous centers is

larger than 𝜉𝑈 , we assign a new kernel center to this input 𝑢𝑡

with the weight 𝑤𝑘,𝑡. If the distance is smaller than 𝜉𝑈, the

centers remain unchanged, and 𝑢𝑡 is quantized to the closest

center m. We locally update the center’s coefficient

accordingly, as follows:

{
𝑤𝑘,𝑡 = 𝜂𝑔(𝛿𝑡

𝜆),

𝑤𝑘,𝑚 = 𝑤𝑘,𝑚 + 𝜂𝑔(𝛿𝑡
𝜆),

t: new center index

m: closest center index.

(9)

III. RESULTS

 First, we will visualize the simulated neural data structure

obtained by principal component analysis (PCA) and show

the decoding results and detailed analysis of the three models

respectively.

Figure 3. Neural patterns of four actions visualized by three main
components of PCA.

 In Fig. 3, we generate the spike data of four actions based

on the tuning function in (1). Then we visualize the neural

structure with the top three main components of PCA. We can

see that the four clusters are separable, though with some

overlaps, which imitates the real M1 neural data.

Figure 4. The training curves of the three methods.

 We design the experiment with two steps to reach the

peripheral targets and two steps to go back to the center, as

described in Fig. 1. In other words, the subjects need four

steps to finish one trial to get an external reward. We generate

input data for the four respective directions and combine them

in one trial. We shuffle 10000 trials for each initialization (70%

for training, 30% for testing) and repeat the process 10 times.

The input is the simulated neural data of the designed

trajectory, and the output is the action sequence. The best

parameters are explored for the three algorithms separately.

We set the hidden number =10, discount factor 𝛾1 = 0.99,

and learning rate 𝜂1 = 0.01 for SAGREL; kernel size 𝜎2 = 3,

learning rate 𝜂2 = 0.01 , quantization threshold 𝜉2 = 0.2 ,

discount factor 𝛾2 = 0.99 and temperature parameter 𝜏2 =
0.1 for TD-QAGKRL; and kernel size 𝜎3 = 3.5, learning rate

0 5 10 15 20 25 30 35

Epochs

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
c
cu

ra
cy

Q-KTD SAGREL TD-QAGKRL

6723

𝜂3 = 0.01, quantization threshold 𝜉3 = 0.2, discount factor

𝛾3 = 0.99 and 𝜀 = 0.05 for Q-KTD. The learning curves of

the three methods are shown in Fig. 4. The x-axis is the

training epoch (each contains 50 trials), and the y-axis is the

decoding accuracy. The red, green and blue shaded curves

(solid line shows mean value, and shaded area stands for the

variance) represent TD-QAGKRL, SAGREL and Q-KTD,

respectively. We can see that SAGREL cannot converge due

to its local structure, while Q-KTD obtains a high

performance but sometimes is trapped in the local minima

when assigning credit over time due to its action-selection

policy. It chooses an action with the maximal reward with a

large possibility, and hardly explores the other actions, which

may be better in the later training sessions. In comparison,

TD-QAGKRL converges faster and has a higher convergence

rate than Q-KTD, which is mainly contributed by the softmax

policy and the expansive function.

Figure 5. Corresponding action values of SAGREL, TD-QAGKRL and

Q-KTD in the later training session.

 Fig. 5 shows the action values of the four actions for the

three methods in the later training session (which includes 5

trials, going up and then down). The x-axis is the training time,

and y-axis is the action value. The brown stripes on the grey

line indicate the start of each trial. As we can see from Fig.

5(a), SAGREL cannot distinguish between four actions after

long-term training, while Fig. 5(b) shows that TD-QAGKRL

can perfectly discriminate these actions and choose the

correct action to complete the task. Q-KTD, meanwhile, can

differentiate the actions well for most of the trials when it has

a good initialization. But, compared with TD-QAGKRL, the

actions are less discriminated, as indicated by the red stars in

Fig. 5(c), and thus Q-KTD is highly likely to choose the

wrong action. With the well-trained parameters, we test three

algorithms on the data that never appeared in the training

session. We conduct the testing on ten initializations (each

containing 3000 points for testing). TD-GAGKRL (96.2% ±
0.77%) performs statistically better than Q-KTD (57.4% ±
40.5%) (pair-wise Student’s t-test, p<0.05).

IV. CONCLUSION AND DISCUSSION

 Reinforcement learning-based decoders have been

utilized in BMIs to enable disabled people to control external

devices, guided by a reward. However, when the task

becomes more complex, it is difficult and time-consuming to

train the decoder with the reward by the end of the trial. Here,

we propose to embed temporal difference into the QAGKRL

algorithm to ensure its performance. Compared with existing

methods, our TD-QAGKRL algorithm can achieve better

performance (96.2% ± 0.77%) and converges faster, with a

smaller variance on simulated neural data. In future work, we

plan to test TD-QAGKRL on in vivo data and extend this

work in an online manner for clinical applications.

REFERENCES

[1] M. A. Lebedev and M. A. L. Nicolelis, “Brain–machine

interfaces: past, present and future,” Trends Neurosci., vol. 29,

no. 9, pp. 536–546, Sep. 2006.

[2] J. Wessberg et al., “Real-time prediction of hand trajectory by
ensembles of cortical neurons in primates,” Nature, vol. 408, no.

1, pp. 361–365, 2000.

[3] J. DiGiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J. C.
Sanchez, “Coadaptive brain-machine interface via reinforcement

learning,” IEEE Trans. Biomed. Eng., vol. 56, no. 1, pp. 54–64,

Jan. 2009.
[4] Y. Wang, F. Wang, K. Xu, Q. Zhang, S. Zhang, and X. Zheng,

“Neural control of a tracking task via attention-gated

reinforcement learning for brain-machine interfaces,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 3, pp. 458–467,

2015.

[5] F. Wang et al., “Quantized Attention-Gated Kernel
Reinforcement Learning for Brain-Machine Interface Decoding,”

IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 4, pp.

873–886, 2017.

[6] X. Zhang, C. Libedinsky, R. So, J. C. Principe, and Y. Wang,

“Clustering Neural Patterns in Kernel Reinforcement Learning

Assists Fast Brain Control in Brain-Machine Interfaces,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 9, pp. 1684–1694,

Sep. 2019.

[7] T. Brosch, F. Schwenker, and H. Neumann, “Attention-gated
reinforcement learning in neural networks - A unified view,” in

Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2013, vol. 8131 LNCS, pp. 272–279.

[8] R. Sutton, “Introduction to Reinforcement Learning R A I L &.”

[9] X. Shen, X. Zhang, Y. Huang, S. Chen, and Y. Wang,
“Reinforcement Learning based Decoding Using Internal Reward

for Time Delayed Task in Brain Machine Interfaces,” in

Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS, 2020, vol.

2020-July, pp. 3351–3354.

[10] J. Bae, L. G. Sanchez Giraldo, E. A. Pohlmeyer, J. T. Francis, J.

C. Sanchez, and J. C. Príncipe, “Kernel temporal differences for

neural decoding,” Comput. Intell. Neurosci., vol. 2015, 2015.
[11] J. Bae, P. Chhatbar, J. T. Francis, J. C. Sanchez, and J. C.

Principe, “Reinforcement learning via kernel temporal

difference,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology

Society, EMBS, 2011, pp. 5662–5665.

[12] C. Libedinsky et al., “Independent Mobility Achieved through a
Wireless Brain-Machine Interface,” PLoS One, vol. 11, no. 11, p.

e0165773, Nov. 2016.

[13] B. Amirikian and A. P. Georgopulos, “Directional tuning profiles
of motor cortical cells,” Neurosci. Res., vol. 36, no. 1, pp. 73–79,

Jan. 2000.

A
ct

io
n

 v
al

u
e

o
f

T
D

-Q
A

G
K

R
L

A
c
ti

o
n
 v

al
u

e
o
f

Q
-K

T
D

A
ct

io
n

 v
a
lu

e
o

f

 S
A

G
R

E
L

6520 6525 6530 6535 6540

6520 6525 6530 6535 6540

6520 6525 6530 6535 6540

0.5

1

0

0.3

0.4

0.2

0

2

-2

Training time

up rightdown left

Center

T2

(a)

(b)

(c)

* *

6724

