
A New Non-Negative Matrix Co-Factorisation Approach
for Noisy Neonatal Chest Sound Separation

Ethan Grooby, Jinyuan He, Davood Fattahi, Lindsay Zhou, Arrabella King, Ashwin Ramanathan,
Atul Malhotra, Guy A. Dumont, Life Fellow, IEEE, Faezeh Marzbanrad, Senior Member, IEEE

Abstract— Obtaining high quality heart and lung sounds
enables clinicians to accurately assess a newborns cardio-
respiratory health and provide timely care. However, noisy chest
sound recordings are common, hindering timely and accurate
assessment. A new Non-negative Matrix Co-Factorisation based
approach is proposed to separate noisy chest sound recordings
into heart, lung and noise components to address this problem.
This method is achieved through training with 20 high quality
heart and lung sounds, in parallel with separating the sounds
of the noisy recording. The method was tested on 68 10-second
noisy recordings containing both heart and lung sounds and
compared to the current state of the art Non-negative Matrix
Factorisation methods. Results show significant improvements
in heart and lung sound quality scores respectively, and im-
proved accuracy of 3.6bpm and 1.2bpm in heart and breathing
rate estimation respectively, when compared to existing meth-
ods.

I. Introduction
Accurate and timely assessment for signs of serious health

problems such as cardio-respiratory diseases is an essential
requirement to provide care to newborns [1]. Recording chest
sounds with a stethoscope is a common and simple method
to obtain such information. In recent times, the availability
of digital stethoscopes for neonates has attracted several
studies [2]–[5]. However, higher level of noise in neonatal
intensive care in comparison to adult and paediatric wards,
has resulted in poor quality chest sound recordings and
inaccurate assessment. For instance, estimation of heart rate
and breathing rate from low quality signals has been shown
to be error-prone [6]. Noise interference in chest sounds can
include external and background noise [7], heart or lung
sound acting as noise for one another, other internal sounds
such as bowel sounds, gastric reflux and air swallow, and
respiratory support equipment noise. Overall, it is essential
to reduce external, internal and respiratory support noises,
and separate heart and lung sounds prior to any assessment
and diagnosis.
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Denoising and sound separation methods to obtain high
quality heart and lung sounds can be broken up into multi-
channel and single channel methods. In multi-channel meth-
ods, a reference signal such as electrocardiogram or sec-
ondary microphone placed either to capture external noise
and/or secondary chest recording is used. Utilising this ref-
erence signal, adaptive filtering methods, direct removal and
interpolation or Non-negative Matrix Factorisation (NMF)
can be used to remove this signal from the primary recording
[8]–[10]. However, as typically the reference and primary
signals are both mixtures of the desired heart and lung sounds
along with the other noises, these are not ideal approaches.
Blind source separation and independent component analysis
methods address this problem by separating the reference
and primary signals into their primary components which
are assumed to be heart and lung sounds [8]. Overall these
methods require additional sensors which are not always
accessible and feasible to implement.

For single source sound separation and denoising, current
methods have proven only partially effective. A common
approach is to first obtain a reference heart sound signal
through methods such as singular spectrum analysis, wavelet
denoising and adaptive line enhancement, and then perform
similar processes as in multi-channel methods [9], [11],
[12]. However, the accuracy of obtaining reference heart
sounds is dependent on low noise content and fixed heart-
based parameters based on adults. For newborns, noisy chest
sound recordings are common and heart sound properties
differ from adults, making these approaches not general-
isable nor adaptable from recording to recording. Other
methods include standard frequency filtering, modulation
filtering which involves standard frequency filtering on the
frequency domain, as opposed time domain representation
of the recording and multi-resolution wavelet decomposi-
tion and reconstruction [8], [13], [14]. Standard frequency
filtering is limited due to frequency overlap with heart,
lung and noise sources, whereas modulation filtering and
multi-resolution wavelet decomposition and reconstruction
are parameter dependent and separate the recording into only
heart and lung, without removing other noise sources.

Three key contributions are presented in this paper. First, a
new NMCF approach focused on obtaining high quality heart
and lung sounds specifically for the newborn population is
proposed. Second, we incorporate a noise component in the
NMCF model, to separate the sounds into not only heart
and lung sounds but also the noise. Finally, the method is
assessed using real-world noisy neonatal chest sounds with
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heart and lung signal quality and heart and breathing rate
accuracy.

The rest of this paper is organised as follows. Section
II reviews existing work on NMF and general formulation
of proposed NMCF method. Section III presents details
implementation of the methods their evaluation. Results and
discussion are provided in sections IV and V. Section VI
concludes the whole work.

II. Background

A. Non-Negative Matrix Factorisation

Non-negative matrix factorisation decomposes a given
non-negative matrix V ∈ <F×T

+ into two non-negative
matrices W ∈ <F×K

+ and H ∈ <K×T
+ (Eq. 1), where

K < min(R, T )) and E represents the reconstruction error
between V and WH.

V = WH + E

= Λ + E
(1)

In denoising and sound separation, V represents the mag-
nitude of time-frequency representation of the recording
mixture. The weight matrix, W contains the basis vectors w1

to wK that represent the spectral pattern of different types
of signals sources (e.g. heart, lung and noise) or their sub-
components and H, the activation matrix (h1 to hk) represents
when the signal sources occur during a particular time frame.
These sub-components can be combined such that the first set
of components (1 to bh), second set of components (bh+1 to
bh+bl) and third set of components (bh+bl+1 to bh+bl+bn)
represent heart (Vh = WhHh), lung (Vl = WlHl) and noise
respectively (Vn = WnHn) (Eq.2). Where bh, bl, bn are the
total number of components used to represent heart, lung and
noise with bh + bl + bn = K.

WH = [w1, w2, ..., wK ][h1;h2; ...;hK ]

= [w1, ..., wbh |wbh+1, ..., wbh+bl |wbh+bl+1, ...wK ]

[h1; ...;hbh |hbh+1; ...;hbh+bl |hbh+bl+1; ...;hK ]

= [Wh|Wl|Wn][Hh;Hh; ...;Hn]

= WhHh +WlHl +WnHn

≈ Vh + Vl + Vn

Where : h = Heart, l = Lung, n = Noise

(2)

In the general unsupervised scenario, both W and H are
optimised during test time to minimise the cost function D
(Eq.3). Most popular cost functions as shown in Eq.4 are;
β = 0 as Ikaura-Saito distance, β = 1 as Kullback-Leibler
divergence and β = 2 which yields Euclidean distance. For
heart-lung sound separation, Kullback-Leibler divergence has
generated the best results [15], [16].

Wopt, Hopt = min
W,H

Dβ(V |WH) (3)

Dβ(x|y) =


(xβ−yβ−βyβ−1(x−y))

β(β−1)
, if β ∈ <\{0, 1}

x(log(x)− log(y)) + (y − x), if β = 1
x
y − log(xy )− 1, if β = 0

(4)
A sparsity penalty on the activation matrix H is typically

added to enable more detailed decompositions both tem-
porally and spectrally, while ensuring only a small set of
meaningful basis vectors are active at a single time frame
(Eq.5) [17]. Overall, this enables a finer level of sound
separation. The sparsity penalty is calculated based on the
L1-norm of H and µ controls the importance of the sparsity
constraint.

Wopt, Hopt = min
W,H

D(V |ŴH)

Where : D(V |ŴH) = Dβ(V |ŴH) + µ||H||1,

Ŵ = [
w1

||w1||
,
w2

||w2||
, ...,

wK
||wK ||

]

(5)

Based on the cost functions in Eqs. 3 and 5, the multi-
plicative update rule for W and H are shown in Eqs. 6 and 7
respectively. Note that division and ⊗ refer to element-wise
division and multiplication.

H ← H ⊗ ŴT (V ⊗ Λβ−2)

ŴTΛβ−1 + µ
,Λ = WH

H ← H ⊗ Hnum(V,W,H)

Hdem(V,W,H)

(6)

W ← Ŵ⊗
(Λβ−2 ⊗ V )HT + Ŵ ⊗ (11T (Ŵ ⊗ (Λβ−1HT )))

Λβ−1HT + Ŵ ⊗ (11T (Ŵ ⊗ ((Λβ−2 ⊗ V )HT )))

Where : Λ = WH, 1 = length F column vector of ones

W ←W ⊗ Wnum(V,W,H)

Wdem(V,W,H)
(7)

B. Single-Source NMF Existing Methods

For denoising and heart and lung sound separation, the
majority of past works remove the noise component using
standard frequency filtering or assume no noise is present,
and then utilise NMF to separate heart and lung sounds [10],
[15], [16].

Two methods are adapted and tested, both methods blindly
decompose the mixture into numerous sub-components and
then cluster all components into either heart or lung based
on spectral or temporal criteria. In Shah et al. method,
initial selection of reference basis vectors W ref

h and W ref
l ,

was originally based on the sub-component with strongest
power below 100Hz and above 300Hz frequency regions for
heart and lung [10]. These bands were modified to be 50-
250Hz and 250-1000Hz frequency regions, as this matches
neonatal heart and lung properties respectively, more closely.
Canadas-Quesada et al. utilised three clustering criteria,
namely, spectral correlation with clean heart sound database,
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temporal correlation with detected S1 and S2 heart peaks and
frequency roll-off [16]. For spectral correlation calculations,
we used 10 high quality neonatal heart sounds as defined
in section III-C.2 for the reference database, as opposed
to adult heart sound recordings used in the paper [16]. As
heart peak detection for temporal correlation used specific
parameters related adult heart sounds, this was modified to
use a hidden Markov model with heart rate in the range
of 70-220bpm, as this provides more accurate results for
newborns [6]. To avoid using parameter based cutoffs for the
clustering criteria which have not been adapted for newborn
population, instead, we obtained the sum of the normalised
three criteria and top scoring 55 components were assigned
to heart and remaining 64 to lung [6]. Finally, the more
appropriate sparsity implementation (Eqs. 6 and 7) was used
in the implementation of Canadas-Quesada et al. proposed
NMF method.

C. Proposed NMCF Method
In NMCF, instead of having a training and test phase,

which occurs in supervised (Eq.8) and semi-supervised
(Eq.9) NMF, the matrix basis matrix W is optimised simul-
taneously with sound separation. This method enables more
efficient sound separation as the mixture recording can also
contribute to the training of W [18].

Wopt, Hmopt = min
W,H

(D(Vm|ŴHm) +D(Vh|ŴhHh)

+D(Vl|ŴlHl))

Where : Hm = [Hmh;Hml], Ŵ = [Ŵh, Ŵl]

(8)

Wopt, Hmopt = min
W,H

(D(Vm|ŴHm) +D(Vh|ŴhHh))

Where : Hm = [Hmh;Hml], Ŵ = [Ŵh, Ŵl]
(9)

However, as obtaining pure heart or lung sounds is not
feasible, we propose a modified version of NMCF (Eq.10,
Algorithm 1, Figure 1). In this version, datasets of high
quality heart, and lung sounds are used in the cost function
to enable generalisation of Wh and Wl respectively for sound
separation.

The weighting factors λh and λl are determined based on
prediction probability of being high quality using automated
methods generated in previous works and discussed in III-
C.2 [6]. Additionally, an unsupervised component Wun is
added to deal with the large variety of noises that are not
covered, therefore avoiding these components being assigned
to the heart or lung components.

Wopt, Hmopt = min
W,H

(D(Vm|ŴHm)

+

eh∑
ih=1

λ
(ih)
h D(V

(ih)
h |ŴhH

(ih)
h )

+
el∑
il=1

λ
(il)
l D(V

(il)
l |ŴlH

(il)
l ))

Where : Hm = [Hmh;Hml;Hmun],

Ŵ = [Ŵh, Ŵl, Ŵun]

(10)

Algorithm 1: Proposed NMCF

Vm, Phase = stft(audiom);
V

(ih)
h = stft(audio

(ih)
h );

V
(il)
l = stft(audio

(il)
l );

init Hmh, Hml, Hmun, H
ih
h , H

il
l ;

init Ŵh, Ŵl, Ŵun;
for i=1:maxiter do

Hm ← Hm ⊗ Hnum(Vm,W,Hm)
Hdem(Vm,W,Hm)

Hih
h ← Hih

h ⊗
Hnum(V ihh ,Wh,H

ih
h )

Hdem(V ihh ,Wh,Hihh )
;

Hil
l ← Hil

l ⊗
Hnum(V ill ,Wl,H

il
l )

Hdem(V ill ,Wl,Hill )
;

Wh ←Wh ⊗
Wnum(Vm,Wh,Hmh)+

∑eh
ih=1 λ

eh
h Wnum(V (ih),Wh,H

(ih)
h )

Wdem(Vm,Wh,Hmh)+
∑eh
ih=1 λ

eh
h Wnum(V (ih),Wh,H

(ih)
h )

;

Wh = normalisation(Wh);
Wl ←Wl ⊗
Wnum(Vm,Wl,Hml)+

∑el
il=1 λ

el
l Wnum(V (il),Wl,H

(il)
l )

Wdem(Vm,Wh,Hmh)+
∑el
il=1 λ

el
l Wnum(V (il),Wl,H

(il)
l )

;

Wl = normalisation(Wl);
Wun ←Wun ⊗ Wnum(Vm,Wun,Hmun)

Wdem(Vm,Wun,Hmun)
;

Wun = normalisation(Wun);

W = [Ŵh, Ŵl, Ŵun];
Hm = [Hmh;Hml;Hmun];
maskh = ŴhHmh

WH ;
maskl = ŴlHml

WH ;
Vh = np.multiply(Vm,maskh);
Vl = np.multiply(Vm,maskl);
audioheart = istft(Vh, Phase);
audiolung = istft(Vl, Phase);

III. Methods

A. Data Acquisition and Preprocessing

The study was conducted at Monash Newborn, Monash
Children’s Hospital, a tertiary-level neonatal unit in Mel-
bourne, Australia, and was approved by the Monash Health
Human Research Ethics Committee (HREA/18/MonH/471).
A total of 298 60s recordings from preterm and term new-
borns were obtained using a digital stethoscope at 16kHz
or 44.1kHz sampling frequency. These recordings were then
lowpass filtered to avoid aliasing and down-sampled to 4kHz.
Recordings significantly damaged from artifacts making lung
and heart sounds impossible to recover were removed. Then
10-second segments containing both heart and breathing
sounds were manually extracted. Further details on data
acquisition and preprocessing can be found here [4]–[6].
Total of 68 10-second segments from 60 patients were used
in the performance evaluation of the existing and proposed
denoising and sound separation methods.

B. Implementation

Clean heart and lung sound databases containing 20 high
quality heart and lung sounds from 18 subjects were assessed
by the method in section III-C.2. These database recordings
are separate from recordings and patients from the evaluation
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Fig. 1: NMCF Flowchart

TABLE I: Signal Quality

Method Heart Rate Median
Absolute Error (IQR)

Heart Signal Quality
Mean Improvement

(STD)

Breathing Rate Median
Absolute Error (IQR)

Lung Signal Quality
Mean Improvement

(STD)
Proposed NMCF 2.51b/10s (4.63b/10s) 0.60 (0.36) 1.38b/10s (1.89b/10s) 0.22 (0.29)

NMF by Shah et al. [10] 3.12b/10s (4.99b/10s) 0.08 (0.16) 1.82b/10s (2.07b/10s) -0.05 (0.20)
NMF by Canadas-Quesada et

al. [16]
3.46b/10s (4.32b/10s) 0.09 (0.20) 1.57b/10s (2.42b/10s) 0.03 (0.19)

IQR=Interquartile range for MAE, STD= Standard deviation, b/10s=beats/breaths per 10 second recording
Heart and lung signal quality of proposed and existing methods were compared to original noisy chest recording, to calculate overall signal quality

improvement.

set. Short-time Fourier transform (STFT) with window length
2048 samples, 75% overlap and hanning window was used
to obtained frequency representation of databases and noisy
chest sound recordings. Heart, lung and noise unsupervised
signals (bh, bl, bn) were represented by 20, 20 and 10 com-
ponents, sparsity of 0.001, max iteration of 500 and beta
loss of 1 corresponding to Kullback-Leibler divergence were
used for NMCF.

C. Performance Evaluation

1) Heart Rate and Breathing Rate Error: A key goal of
obtaining high quality heart and lung sounds is to achieve
accurate heart rate and breathing rate estimates, as they
are essential in cardio-respiratory health assessment [19],
[20]. Hence, determining the accuracy of these metrics from
recordings allow the evaluation signal quality.

Reference heart rate and breathing rate were obtained from
6 annotators, with the mean used for comparison. Calculated
heart rate is initial determined from peak detection of en-
velope, which is then used for heart segmentation to obtain
overall heart rate estimate. Breathing rate is determined from
peak detection of 300-450Hz power envelope. More details
of calculated heart and breathing rate can be found here [6].

Median absolute error and interquartile range of proposed
and existing methods are shown in Table I.

2) Signal Quality Assessment: Automated signal quality
assessment method to classify heart and lung sounds as
high and lung quality using dynamic binary classification
was developed in the previous work [6]. The prediction
probability of high quality is used to provide a score from 0
to 1 with regards to signal quality [6].

3) Statistical Analysis: Statistical tests were performed to
determine if proposed NMCF method is significantly better
than existing NMF methods. As heart and breathing rate
error, and heart and lung signal qualities are not normally dis-
tributed according to Jarque-Bera test, one-sided Wilcoxon
signed-ranked test was performed to test significance.

IV. Results

In Table I heart and lung signal qualities of proposed
and existing methods were compared to the original noisy
recording, to calculate overall signal quality improvement.
All methods showed improvement in heart signal quality by
0.60, 0.08 and 0.09 for the proposed and existing methods
respectively. However, for lung quality, Shah et al. NMF
method saw a decrease by 0.05, whereas it improve by
0.22 and 0.03 in proposed and Canadas-Quesada et al. NMF
methods respectively. Overall, proposed method produced
significantly better heart and lung signal quality compared
to existing methods, with p-values of 2.7×10−15, 6.8×10−5
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Fig. 2: Example Output from NMCF Method
In the heart plot, heart beats are highlighted in red using method proposed

in [6]. In the lung plot, expiration segments are highlighted manually in
red, whereas inspiration segments are not highlighted as they are too quiet

to be heard or observed easily.

respectively. The proposed method saw improvement of
0.60b/10s and 0.20b/10s in heart and breathing rate median
absolute error compared to existing methods. However, these
improvements were not significant, with p-values of 0.10
and 0.14 for heart and breathing rate error improvement
respectively.

Figure 2 shows an example of input noisy mixture record-
ing and the resultant heart, lung and noise components gen-
erated from the proposed NMCF method. For heart signal,
heart beats can be clearly visualised with minimal noise.
While for the lung signal, expiration can be more easily
visualised in comparison to the noisy mixture recording,
the residual heart beats and noise are still present. The
unsupervised noise component appears to successfully aid
in the denoising of the heart and lung signals, allowing heart
beats and expiration to be more clearly heard and observed
as well.

V. Discussion
As can be seen in Table I, the proposed NMCF outper-

forms the two modified existing NMF methods, this was

especially prominent in noisy chest sound recordings which
high quality heart and lung sound separation was difficult to
obtain with the existing methods. The difficulty in dealing
with noisy chest sound recordings with the existing methods
is due to fact that during the clustering phase, all components
are either assigned to heart or lung, meaning no noise
components are removed. Hence, as heart sounds are easier
to separate, the noise components tend to end up with the
separated lung sound. This can explain the decrease in lung
signal quality using NMF method proposed by Shah et al.,
whereas for our proposed method, noisy components that
are not closely related to the clean heart and lung sounds are
clustered in the noise unsupervised component.

A potential solution to the existing methods is that during
clustering phase, only the top components related heart and
lung based on clustering criteria are grouped up, that is the
top bh and bl components are allocated into heart and lung
respectively. The remaining components not clustered are
then assumed to be noise and removed.

However, another issue with the existing methods is the
clustering criteria and methodology itself. With the first
method, which a reference basis matrix is generated and
continually updated during the clustering phase, there is a
decent probability that for a recording with a strong noisy
component to be incorrectly placed into the reference basis
matrix early on. The inclusion of the noisy component in
the reference basis matrix then further propagates the error
as now further noisy components will be clustered into
the reference basis matrix as their correlation criteria has
increased. Whereas for the method proposed by Canadas-
Quesada et al., the roll-off and temporal correlation criteria
are prone to error due to noisy signals. In particular, for
temporal correlation, the estimation of S1 and S2 locations
within a noisy signal are likely to be inaccurate.

For low noise recordings, existing methods for heart and
lung sound separation perform well, but still outperformed
by the proposed method. This is most likely due to the co-
factorisation part and number of components. For the existing
methods, the recording mixture is blindly decomposed into
components and then clustered and into heart and lung
components. This blind decomposition means the resultant
sub-components may not be directly related to heart and
lung, but instead a mixture of heart, lung and low noise
content. For the proposed method, the training datasets
enable more relevant decomposition to occur. For the NMF
by Shah et al., the recording is only decomposed into 20
components which through clustering, results in only 1 heart
and 1 lung component for the second stage of NMF. This
is too few components to represent complex nature of both
heart and lung, which is why in our method 20 components
are used to represented heart and lung and another 10 for
noise unsupervised component.

A limitation of the proposed method is the lung quality
results, which still contain noise and some remains of heart
sound. This is likely due to lung sounds having broad
frequency band nature, which overlaps with heart and noise
sounds, and having unreliable periodicity, making it harder
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to denoise and separate. A potential future improvement is
the inclusion of a sample noise database into the algorithm,
which will assist in the further removal of noise from the lung
component. This potential improvement is further supported
when analysing the separated noise component, which while
containing noise also includes some heart and lung compo-
nents due to its unsupervised nature. Other potential solutions
are the improvement of the clean lung training database
for higher quality lung sounds that are less contaminated
by heart and noise and parameter optimisation of sparsity,
beta loss, window length and percentage overlap of STFT,
number of heart, lung and noise unsupervised basis, number
of training examples in the databases and relative weighting
factor between training examples and the current recording
mixture during co-factorisation.

Another limitation of the proposed method in comparison
to the existing methods is the high computational cost of
co-factorisation. Two solutions to minimise this effect are
introducing an early stopping criteria when the cost function
is not decreasing a significant amount and reducing the size
of the training examples. Preliminary results suggest that
careful selection of 5 heart and lung sounds for the databases
may be sufficient.

Future work on the development of noise and lung spectral
correlation criteria may result in a more accurate separation
into heart, lung and noise components. Additionally, it may
be possible to include these criteria within the framework
NMCF to particularly assist in the removal of noise and heart
components in the separated lung sound. However, careful
consideration into the effects of the cost function and stability
of the multiplicative updates is required.

With regards to the evaluation methods, heart rate and
breathing rate error were calculated based on annotator
estimations. This method is not the gold standard and in fu-
ture studies synchronous electrocardiogram will be obtained
and used for gold standard heart and breathing rate error
calculations.

Future work is underway to obtain a larger set of high
quality heart and lung sounds from newborns, which can be
used to generate artificial mixtures which then can be used
to more extensively assess denoising and sound separation
techniques and optimise the parameters of the proposed
NMCF method.

VI. Conclusion

This paper focuses on a new approach, based on NMCF
in order to obtain high quality heart and lung sounds. The
model was trained with high quality heart and lung sounds
in parallel with separating sounds from noisy recordings
into heart, lung and noise. The training set enabled detailed
frequency and temporal aspects of heart and lung to be
separated, whereas the parallel training enabled adaptation
of the model more specifically to a particular recording and
the inclusion of the unsupervised noise component enabled
successful denoising of the heart and lung sounds. Overall,
this method enables high quality lung and hearts sounds to
be generated for analysis.
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