
  

  

Abstract— Electrocardiography is a very common, non-
invasive diagnostic procedure and its interpretation is 
increasingly supported by automatic interpretation algorithms. 
Recently many works also focused on the design of automatic 
ECG abnormality detection algorithms. However, clinical 
electrocardiogram datasets often suffer from their heavy needs 
for expert annotations, which are often expensive and hard to 
obtain. In this work, we proposed a weakly supervised 
pretraining method based on the Siamese neural network, which 
utilizes the original diagnostic information written by physicians 
to produce useful feature representations of the ECG signal 
which improves performance of ECG abnormality detection 
algorithms with fewer expert annotations. The experiment 
showed that with the proposed weekly supervised pretraining, 
the performance of ECG abnormality detection algorithms that 
was trained with only 1/8 annotated ECG data outperforms 
classical models that was trained with fully annotated ECG data, 
which implies a large proportion of annotation resource could be 
saved. The proposed technique could be easily extended to other 
tasks beside abnormality detection provided that the text 
similarity metric is specifically designed for the given task. 
 

Clinical Relevance—This work proposes a novel framework 
for the automatic detection of cardiovascular disease based on 
electrocardiogram. 

I. INTRODUCTION 

Automatic annotation algorithm of electrocardiogram 
(ECG) has received wide attention because of its vital role in 
clinical diagnosis of various cardiac diseases[1]. As an external 
measure result of myocardial electrophysiological activity, it 
reflects the electrical depolarization and repolarization 
patterns of the heart[2]. Arrhythmia is understood as 
disturbance in the rate, regularity, site of origin or conduction 
of the electrical impulses through the heart. The diagnosis of 
arrhythmia by ECG has attracted great attention from 
cardiologists[3,4,5,6,7,8,9,10,11,12,13, 14]. 

In recent years, many machine learning methods have been 
developed in ECG characteristic points detection. Saini et al.[15] 
proposed a K-Nearest Neighbor classification approach for 
ECG recognition. However, the K-NN method suffers from 
the curse of dimensionality when the feature dimension is high, 
and the trained K-NN classifier model is memory consuming 
since it needs to store all of the training data. Bayesian method 
was proposed[16,17] based on partially collapsed Gibbs sampler. 
By exploiting the strong local dependency of ECG signals, the 
method showed relatively high detection rate on QT database. 
Gao et al[18] proposed randomly selected signal pair difference 
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(RSSPD) feature extracted from time domain signals and used 
a random forest classifier and some post processing to generate 
final results. Ming Chen et al[24] proposed end-to-end deep 
learning based ECG characteristic point detection algorithm, 
where region aggregation module was designed to replace the 
simple fully connected layers which usually play the role of 
regressor, which performed well on QT database[19].  

Machine learning based ECG abnormality detection 
usually requires a large amount of data and high-quality 
annotations during the training. However, the clinical ECG 
signal annotations are expensive and difficult to obtain, and the 
precious time of cardiovascular physicians should be put into 
the diagnosis and treatment of patients. Most of the previous 
work focused on the design of efficient algorithms and models 
to improve the performance of the ECG signal abnormality 
detection algorithm, while failed to take consideration into the 
cost of model training. In order to facilitate the implementation 
and deployment of the ECG signal abnormality monitoring 
algorithm, we should explore cheaper training methods with 
less data, or at least, fewer manual annotations, to efficiently 
train the model to diagnose ECG abnormality. 

In this work, we proposed a weakly supervised pretraining 
method based on the Siamese neural network, which utilizes 
the original diagnostic information of the ECG signal to 
calculate the semantic similarity between the ECG signals 
without the ECG signal category labeling, and then took the 
semantic similarity as the label during the training of the 
Siamese neural network, which extracts the representation of 
the ECG signals. After that, a Light GBM model was utilized 
to perform supervised training on a small fraction of manually 
annotated ECG data, obtaining a classifier on the abnormality 
of the ECG signal. Experiments show that such a design 
significantly reduced the need for manual labeling of ECG 
diagnoses during the training process, and allowed the ECG 
abnormality detection model to use less manual labeling 
information to obtain better classification performance on the 
PTB-XL dataset. 

II. OUR APPROACH 

A.  Siamese Network 
Siamese Networks[22] are widely used in the field of 

computer vision and natural language processing tasks to 
enhance the interpretability of neural network and to improve 
the classification accuracy on imbalanced datasets. A base 
network structure was selected, for example, one-dimensional 
residual network with 34 layers (i.e. ResNet34), as the 
component of the Siamese network. The final fully connected 
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layer of the base network was removed to output features 
generated by residual blocks rather than the final predictions. 
In the Siamese network, the base network was duplicated as 
two copies with same initial weight values, and the optimizer 
simultaneously update these two copies to ensure they keep 
same weight during the training process. The features 
produced by two copies are then concatenated and passed into 
a fully connected layer followed by a sigmoid function to 
produce a prediction between 0 and 1. The forward 
propagation process is shown as Figure 1. 

 
Figure 1: Forward propagation of proposed Siamese network 

B. Semantic Similarity 
 The original diagnosis reports produced by doctors were 
contained in the PTB-XL dataset, which were written in 
Swedish and usually implied diagnosis conclusion for each 
patient, as illustrated in table 1. The original diagnosis reports 
were preprocessed at the text level to obtain the similarity 
between the diagnose report of each ECG signal, then served 
as labels during the training of the proposed Siamese neural 
network. The calculation of similarity is carried out using the 
fuzzywuzzy toolkit, which uses Levenshtein distance to define 
the similarity between two sentences and can be easily utilized 
on diagnosis reports written in other natural languages. 
TABLE I.           EXAMPLE OF PTB-XL DIAGNOSIS REPORTS  

ECG ID Diagnosis Report 
8727 Sinusrytm vänster kammarhypertrofi. 

9123 Sinus arrhythmie sonst normales ekg 

13447 
Sinusrytm ospecifikt skänkelblock avvikande 

qrs(t) förlopp inferior infarkt ålder ej bestämmbar. 

13698 
Sinusrhythmus qrs(t) abnormal septaler infarkt 

nicht auszuschliessen 

… … 

C. ODENet  
The ODENet was originally proposed by Chen et al[23], 

achieving state-of-the-art performance on MNIST[25] dataset. 
The ODENet contains several blocks named ODE Blocks, as 
shown in Figure 2, which retains feature dimensions and could 
be replicated and reused for multiple time to reduce the spatial 
complexity of model. The forward propagation and back 
propagation of the ODENet differs from traditional neural 
networks. During the forward propagation, each ODE blocks 
were reused for multiple times to simulate the process of 
solving an ODE. While during the backward propagation, the 
gradient of the output of each ODE Block with respect to the 
input of each ODE Block was calculated by adjoint method 
rather than the chain rule, which avoids the gradient vanishing 
problem when the ODE Block is deep. We will show that the 

ODENet alone achieve state-of-the-art performance on the 
PTB-XL dataset, and the Siamese neural network consisted of 
ODENets also achieve state-of-the-art performance on 
abnormality detection task. 

 
Figure 2: Structure of the proposed ODE Net 

III. EXPERIMENTS AND DISCUSSIONS 

We use the Siamese network and ODENet proposed above 
on the diagnostic classification tasks on the PTB-XL dataset. 
The classification performance showed that the ODENet alone 
can achieve state-of-the-art ECG abnormality detection 
performance with much fewer network parameters compared 
with neural networks with other architectures, and the Siamese 
neural network can achieve state-of-the-art ECG abnormality 
detection performance with much less manual annotation of 
training ECG signals, which demonstrates the Siamese 
network learned good features representations for abnormality 
classification.  

A. PTB-XL Dataset 
The PTB-XL dataset[20] comprises 21837 clinical 12-lead 

ECG records of 10 seconds length from 18885 patients, where 
52% were male and 48% were female. The ECG statements 
used for annotation are conform to the SCP-ECG standard and 
were assigned to three non-mutually exclusive categories diag. 
(short for diagnostic), form and rhythm. In total, there are 71 
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different statements, which decompose into 44 diagnostic, 12 
rhythm and 19 form statements. Note that there are 4 form 
statements that are also assigned to the set of diagnostic ECG 
statements. For diagnostic statements also a hierarchical 
organization into five coarse super-classes (NORM: normal 
ECG, CD: conduction disturbance, MI: myocardial infarction, 
HYP: hypertrophy and STTC: ST/T changes) and 24 sub-
classes is provided, see Figure 3. For further details on the 
dataset and the annotation scheme, we refer the readers to the 
original publication[20]. We also refer the readers to the 
publication[21] with benchmarks and insights of PTB-XL for a 
more comprehensive understanding of the dataset. 

 
Figure 3: Sample distribution of super-classes and sub-classes in  

PTB-XL dataset 

B. Experiment Setting 
Before the training process, a median filter was applied on 

the PTB-XL ECG data to remove baseline drift, and a 
Daubechies wavelet filtering was applied to remove high 
frequency noise. The sampling frequency for the PTB-XL 
dataset is 100 Hz, and we split each ECG record into 1000 
sampling points (i.e. 10 seconds). The training set, validation 
set and test set are divided according to the 8:1:1 ratio 
recommended by the publisher of the PTB-XL dataset. We run 
the training on a single GeForce RTX GPU with maximum 
power of 250W. During the testing process, we use F1-macro 
and AUC as the indicator to evaluate the performance of the 
trained ODENet and Siamese network on the testing set. We 
evaluate our algorithms on both 12-leads dataset and single 
lead (I-lead) dataset to address their performance on clinical 
ECGs and dynamic ECGs. 

C. Experiment Results - ODENet 

       The evaluation results of ODENet’s performance on both 
12-leads and single lead PTB-XL dataset are shown as Table 
2 and Table 3. We may conclude that the overall performance 
of ODENet is the same as ResNet34 and XResNet101, which 
are the current best baseline of ECG classification tasks. 
Especially for 12-leads abnormality detection task, ODENet 
outperforms both ResNet34 and XResNet101. The reason 
might be that the abnormality features were more likely to be 
captured by Siamese neural network than other categories. 
 

TABLE II.   ODENET’S PERFORMANCE ON 12-LEADS DATASET  

 ResNet34 XResNet101 ODENet 

 F1 AUC F1 AUC F1 AUC 

NORM 0.8268 0.8952 0.8043 0.9008 0.8516 0.9166 

MI 0.7940 0.8908 0.7940 0.8908 0.7485 0.8707 

STTC 0.8116 0.9051 0.8123 0.9003 0.8040 0.8960 

CD 0.8555 0.9322 0.8681 0.9341 0.8594 0.9296 

HYP 0.8264 0.8904 0.8370 0.9298 0.8265 0.9221 

Average 0.8229 0.9027 0.8231 0.9112 0.8180 0.9070 

 
TABLE III.   ODENET’S PERFORMANCE ON 1-LEAD DATASET  

 ResNet34 XResNet101 ODENet 

 F1 AUC F1 AUC F1 AUC 

NORM 0.7546 0.8125 0.7599 0.8199 0.7446 0.7992 

MI 0.6848 0.7906 0.6561 0.7629 0.7020 0.8073 

STTC 0.7173 0.7996 0.7167 0.7904 0.7054 0.7899 

CD 0.8095 0.8804 0.8118 0.8861 0.8147 0.8877 

HYP 0.7694 0.8632 0.7722 0.8672 0.7655 0.8682 

Average 0.7471 0.8297 0.7433 0.8253 0.7464 0.8305 

D. Experiment Results – Siamese Network 
      The evaluation results of the proposed Siamese neural 
network’s performance compared with single ODENet on both 
12-leads and single lead PTB-XL dataset with different 
annotation proportions on abnormality detection task are 
shown as Table 4 and Table 5. We may conclude that for single 
ODENet, the classification performance on abnormality 
detection task significantly suffers from the lack of data 
annotation. However, for the Siamese neural network, the 
weakly supervised pretraining allows the base network to learn 
useful representations for classification tasks only by original 
diagnosis reports without manual annotation by human experts, 
which improves the classification performance especially 
when there are only a small fractions of ECG data annotated 
(e.g. 1/8). For example, for 12-lead PTB-XL dataset, the 
performance of the Siamese neural network with only 1/8 ECG 
training data annotated outperforms the performance of single 
ODENet with 5/8 ECG training data annotated, and is almost 
the same as the performance of single ODENet with all ECG 
training data annotated. For I-lead PTB-XL dataset, the 
performance of the Siamese neural network with only 1/8 ECG 
training data annotated outperforms the performance of single 
ODENet with all ECG training data annotated, which implies 
a large proportion of annotation resource could be saved. 
 
TABLE IV.   SIAMESE’S PERFORMANCE ON 12-LEADS DATASET  

Annotation 

Ratio 

ODENet ODENet Siamese 
F1 AUC F1 AUC 

1/8 0.7808 0.8498 0.8254 0.9111 

3/8 0.7979 0.8695 0.8338 0.9122 

5/8 0.8136 0.8893 0.8307 0.9151 

8/8 0.8516 0.9166 0.8327 0.9146 
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TABLE V.     SIAMESE’S PERFORMANCE ON 1-LEAD DATASET 

Annotation 

Ratio 

ODENet ODENet Siamese 
F1 AUC F1 AUC 

1/8 0.6838 0.7209 0.7746 0.8499 

3/8 0.7082 0.7426 0.7667 0.8439 

5/8 0.7445 0.8008 0.7791 0.8543 

8/8 0.7446 0.7992 0.7881 0.8528 

IV. CONCLUSION 
In this work, we tackled the well-known problem in the 

field of intelligent medicine that clinical electrocardiogram 
datasets often suffer from their heavy needs for expert 
annotations, which are often expensive and hard to obtain. To 
address this problem, we proposed a weakly supervised 
pretraining method based on the Siamese neural network, 
which utilizes the original diagnostic information of the ECG 
signal to calculate the semantic similarity between the ECG 
signals without the ECG signal category labeling, and then 
took the semantic similarity as the label during the training of 
the Siamese neural network, which extracts the representation 
of the ECG signals. Experiments show that such a design 
significantly reduced the need for manual labeling of ECG 
diagnoses during the training process, and allowed the ECG 
abnormality detection model to use less manual labeling 
information to obtain better classification performance on 
ECG dataset, which implies a large proportion of annotation 
resource could be saved. The proposed technique could be 
easily extended to other tasks beside abnormality detection 
provided that the text similarity metric is specifically 
designed for the given task. 
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