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Abstract— Deep learning has gained increased impact on
medical classification problems in recent years, with models
being trained to high performance. However neural networks
require large amounts of labeled data, which on medical data
can be expensive and cumbersome to obtain. We propose a semi-
supervised setup using an unsupervised variational autoencoder
combined with a supervised classifier to distinguish between
atrial fibrillation and non-atrial fibrillation using ECG records
from the MIT-BIH Atrial Fibrillation Database. The proposed
model was compared to a fully-supervised convolutional neural
network at different proportions of labeled and unlabeled data
(1%-50% labeled and the remaining unlabeled). The results
demonstrate that the semi-supervised approach was superior to
the fully-supervised, from using as little as 5% (5,594 samples)
labeled data with an accuracy of 98.7%. The work provides
proof of concept and demonstrates that the proposed semi-
supervised setup can train high accuracy models at low amounts
of labeled data.

I. INTRODUCTION
Deep learning has in recent years had an increasing impact in
medical research, where models can be trained to very high
performance in a growing number of medical fields. One of
these fields are cardiac arrhythmia. However, the increase in
performance has mainly been driven by supervised methods,
requiring larger datasets that have been very expensive
obtain.

Medical data are quite expensive to properly label, as
it often requires specially trained and experienced medical
staff. Hence, while vast amounts of medical data exist, only
a small amount of it has high quality labels. Further, the price
of labeling often means that these datasets are not publicly
available. One solution to this, is to use semi-supervised
learning, where an unsupervised model is jointly trained on
large amounts of unlabeled data with a supervised model that
is trained on a smaller amount of labeled data.
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As a case study, this paper focuses on detection of
atrial fibrillation (AF) from electrocardiogram (ECG) signals.
According to the National Health Service (NHS) AF is the
most common heart rhythm disturbance affecting more than
1 million people in the United Kingdom alone [1]. AF is
classified as a tachyarrhythmia, where the electrical impulse
is not initiated in the sinus node, but instead in fibrillatory
waves in the atrias. AF is characterized as an irregular rhythm
with loss of the P-waves in the ECG signal.

Detection of AF is a topic that is well investigated with
a lot of the methods focusing on the irregularity of the R-R
intervals (RRI) as their main feature [2], [3]. Using only
the RRI Hong-Wei et al. achieved 97.8% and 99.0% for
sensitivity and specificity respectively [2], and Faust et al.
achieved 99.9% and 99.61% [3]. However, the use of the RRI
tend to result in a high degree of false positives when the
R-peaks are falsely detected. When using common R-peak
detection algorithms such as the Pan-Tompkins [4], this is
common in case of noise [5]. He et al. proposed a method
using the ECG as input and achieved a sensitivity of 99.4%
and a specificity of 98.9% [6].

Other attempts on using semi-supervised learning for
arrhythmia in ECG signals have been made. Zai et al. have
made an ectopic beat classifier, but this however needs
retraining for each new patient. Costa et al. have used an
VAE to classify AF on simulated and real data, but using
intracardiac recordings from pacemaker systems.

For the semi-supervised model, we propose the use of
a variational autoencoder (VAE), which is an unsuper-
vised deep generative model (DGM) originally proposed
by Kingma et al. [9]. The VAE is a network in which a
high dimensional input is mapped into a low dimensional
latent space, from which a high dimensional reconstruction
is created, hereby forcing the network to compute features
that describe the input signal. Previously the use of a VAE
as a semi-supervised auxiliary deep generative model was
demonstrated by Maaløe et al. [10].

We hypothesize that by training a deep neural classifica-
tion model in a semi-supervised approach, it will be possible
to obtain performance on par with the state of the art by only
using a small proportion of labeled data.

II. METHODS
A. Data

The data used in this project came from the MIT-BIH Atrial
Fibrillation database (AFDB) [11], [12]. The AFDB consists
of 23 ECG records, each with two leads and of 10 hours
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length. The records have been digitized using a sampling
frequency of 250 Hz and a 12-bit resolution in the ±10mV
range. Unaudited annotations of the QRS complexes are
available along with manual annotations of the following
subcategories: AF, Atrial Flutter, AV-Junctional rhythm and
Sinus Rhythm (SR).

B. Preprocessing of Data

Each ECG record was split into 10 seconds non-overlapping
segments, to avoid parts of the same segment being present
in both the labeled and unlabeled data set. The label was
given based on the annotation files available with the data
and was divided into AF vs. Non-AF. In situations where
multiple labels were present in the same segment, the label
present for the majority of the segment was used for the
entire segment. For both the training and test set, the data
was balanced by down-sampling of the majority class. The
dataset was split into a training set containing 90% of the
segments and a test set containing the remaining 10%.

To remove the DC-offset and any baseline wandering
before normalization, a high-pass filter with cut off frequency
of 0.5Hz and a filter order of 5 was utilized. All segments
were down sampled to 100Hz

C. Variational Autoencoder

The VAE is an unsupervised generative model, that consists
of two neural networks: An inference model, the encoder and
a generative model, the decoder. The encoder maps the input
sample into a set of lower dimensional latent variables, which
the decoder maps into a reconstruction of the input sample.
The VAE builds upon probability theory and Bayes’ rule.
In the VAE the inference model is defined as qφ(z|x) and
the generative model as pθ(x|z) [9]. By including the label
variable, y, into the model, a semi-supervised generative
probabilistic model can be achieved [10]. In this model the
inference model, Q, is defined as qφ(z|x, y)qφ(y|x), with
each term defined as:

qφ(z|x, y) = N
(
z|µφ(x, y), diag

(
σ2
φ(x, y)

))
, (1)

qφ(y|x) = Bernoulli (y|πφ(x)) , (2)

and the generative model, P, is defined as p(z)pθ(x|z, y),
with each term defined as:

p(z) = N (z|0, I) , (3)

pθ(x|z, y) = f(x; z, y, θ) , (4)

where qφ and pθ are neural networks with parameters φ and
θ, respectively. The inference and generative model is shown
in Figure 1.

The Gaussian distribution qφ(z|x, y) is achieved by split-
ting the last layer of the model into two channels representing
the mean, µφ, and the log variance, log σ2

φ of the distribu-
tions, from which z is sampled using the reparameterization
trick[13].

The reconstruction loss p(x|z, y) is defined as a Gaussian
distribution with µθ being the reconstruction and σθ = 2.

The objective of optimizing the parameters, θ and φ, is
to maximize the log-likelihood log p(x). This is achieved by
using Jensen’ inequality to obtain the evidence lower bound
function, which can be optimized. For the unlabeled case,
the lower bound is given as

log p(x) = log

∫
z

∑
y

p(x, y, z)dz

≥ Eqφ(z,y|x)
[
log

pθ(x, y, z)

qφ(z, y|x)

]
≡ −U(x) ,

(5)

and for the labeled case, the lower bound is defined as

log p(x, y) = log

∫
z

∑
y

p(x, y, z)dz

≥ Eqφ(z|x,y)
[
log

pθ(x, y, z)

qφ(z|x, y)

]
≡ −L(x, y) .

(6)

In the lower bounds the contribution of z and y in the
unlabeled case and z in the labeled case is marginalized out.
For the unlabeled case, y is treated as latent variable and is
sampled by summing over the two classes. For z, the integral
is approximated by sampling from the Gaussian distribution
in the latent space. In the case of labeled data, optimization
for the labels, y, is done using binary cross-entropy.

D. Loss Functions and Warm Up
Besides the lower bounds defined in (5) and (6), an extra loss
was introduced, consisting of the absolute difference between
the standard deviations of the input and reconstruction.
This was introduced to help the decoder to make better
reconstructions. For the classifier, binary cross-entropy loss
was used.

To further help the training of the DGM two warm ups
were introduced, defined as delay and a linear ramp up to
a maximum value. One for the KL divergence, with a 25-
epoch delay, a max weight of 0.1 at epoch 100, and a second
for the classification loss, without delay and a max weight of
0.5 at epoch 40. These were introduced to avoid restraining
the generative part of the network too much in the beginning,
before pushing towards classification and a standard normal
distribution for z.

y

qφ(y|x)

z

qφ(z|y, x)

x

(a) Inference Model, Q

yz

p(z)

x

pθ(x|z, y)

(a) Generative Model, P

Fig. 1. Diagram of (a) the inference model and (b) the generative model of
the proposed network. The grey color of the nodes denotes known data, and
the partly colored node labeled y emphasized the semi-supervised aspect of
the model.
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Fig. 2. Diagram of the proposed deep generative model. 1D Conv: 1-dimensional convolutional layer. FC layer: Fully connected layer.

E. Model Structure
The DGM can be divided into three parts, the encoder, the
classifier and the decoder. The encoder was built with a resid-
ual network (ResNet) architecture consisting of four blocks
each containing three convolutional layers and a residual
connection. ResNet has shown superiority in other image
classification tasks, when compared to classic convolutional
networks [14]. In order to increase the receptive field of the
network, dilation of 2, 4 and 8 was applied to the three layers
within each block respectively. Max-pooling was done in the
end of each block using a kernel size of 3 and a stride of
3, thus decreasing the signal size by a factor 3 per block.
The kernel size and stride were 3 and 1 respectively for
all convolutional layers, and the number of output channels
were fixed per block to 32, 32, 64, 64 for the four blocks
respectively. Two fully connected layers were applied to
the end of the blocks with a size of 1,000 and 500. The
decoder and the classifier were constructed as simple fully
connected neural networks. It consisted of an input layer,
four hidden layers each with 4,096 nodes and an output layer.
The classifier consisted of three layers with 500, 200 and 200
nodes respectively and an binary softmax function as output.
All layers except for output layers used Rectified Linear
Unit as activation function and had batch normalization and
dropout (p = 0.3). A diagram of the model is shown in
Figure 2.

F. Evaluation of the Proposed Model
In order to demonstrate the potential of using the semi-
supervised approach, the proposed DGM was tested against a
conventional CNN, identical to the encoder + classifier of the
DGM. The setup was constructed using different proportions
of unlabeled and labeled data, where the labeled data were
used to train both the DGM and the CNN, and the unlabeled
part of the data were used only to train the DGM with the
unupervised loss. In this way a data ”titration curve” setup
was obtained mimicking scenarios where different amounts
of labeled data could be obtained data. The models were

trained in setups using 1%, 5%, 10% and 50% of the data as
labeled and the remaining as unlabeled. It was ensured that
for each setup, the data in the training and test set were the
same for both the DGM and CNN. Furthermore the random
seed was fixed such that the runs were kept as similar as
possible.

A total of 111,894 segments were available in the training
set after balancing the classes. The test set consisted of
12,434 segments that were also balanced. Each training phase
of the DGM consisted of 50 epochs, where labeled data were
cycled to correspond with the amount of unlabeled data. As
the amount of data per epoch was less when training the
CNN, and hence less updates if it was only permitted to train
for 50 epochs, these were allowed to train until convergence
to give more fair conditions.

III. RESULTS

The results of the training of the DGM and the CNN using
different amounts of labeled data are shown in Table I. The
highest absolute performance was obtained by the DGM in
the semi-supervised approach using 50% of the data labeled,
whereas the largest difference between the CNN and DGM
was obtained when using 1% of the data as labeled.

An input segment and corresponding reconstruction of
chosen samples are shown in Figure 3, and the distribution
of the samples for the test set in the latent space is shown
in Figure 4

TABLE I
TITRATION CURVE OF THE PERFORMANCE ACHIEVED BY THE PROPOSED

DGM AND THE REFERENCE CNN RESPECTIVELY AT DIFFERENT

AMOUNTS OF LABELED DATA.

Accuracy
No. of DGM CNN
labeled data Acc Sen Spe Acc Sen Spe
1% (1,118) 94.0% 98.8% 89.3% 65.8% 93.6% 38.0%
5% (5,594) 98.7% 98.5% 98.9% 95.3% 98.5% 92.1%
10% (11,190) 98.7% 98.9% 98.5% 97.7% 96.2% 99.1%
50% (55,948) 98.8% 98.9% 98.8% 98.2% 97.5% 99.0%
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Fig. 3. Examples of input images and the corresponding reconstructions
achieved by passing samples through the DGM trained on 1% labeled data.

IV. DISCUSSION

The purpose of this study was to provide a proof of concept
that by using a semi-supervised setup when training a deep
neural network, unlabelled data could increase performance
above only supervised. The results in the titration curve in
Table I show that the proposed semi-supervised approach
achieves higher performance in all test cases, with the most
prominent difference in the cases with lower amount of
labeled data. Comparing the results at different amounts of
labeled data even shows, that the semi-supervised approach
with 5% labeled data was superior to the highest obtained
performance by the fully-supervised approach in the 50%
labeled data. Even in the case of 1% labeled data, the DGM
achieved an accuracy of 94.0%, which despite not being
directly on par with the state of the art or the highest achieved
performance in this setup, was still impressive with just
above one thousand labeled data points.

The use of the DGM in combination with a conventional
fully-supervised classifier is based on the idea, that the loss
from the reconstructions will teach the network the structure
of the data. In order to achieve that, the reconstructions
should differ and optimally be like the input signals. The
reconstructions shown in Figure 3 show that even though
it in some cases did not capture the QRS complexes, it
obtained a good reconstruction of other samples. This shows
that the network was capable of learning from the signals,
also helping the classifier to learn.

Our work showed very promising results for DGMs in
semi-supersived learning, despite using a datasebase that was
not ideal for deep learning due to it’s small size. Hence,
future research should be aimed at larger datasets to further
explore the potential of DGMs for semi-supervised learning
in training high-performing models in ECG signals.

V. CONCLUSIONS

We began this paper by hypothesizing that by using DGM
to create a semi-supervised setting for training a deep neural
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Fig. 4. Scatter plot of the latent space of the inputs from the test set
transformed into 2 dimensions using principal component analysis. The
DGM used to obtain the data points was trained on 10% labeled data.

network, it would be possible to achieve close to state of the
art performance on only a small amount of labeled data. The
work presented here thus demonstrates the potential of using
DGM for semi-supervised learning, and that in a setting
where only a small amount of labeled data is available,
information can be extracted effectively from the unlabeled
data and increase classification performance.
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