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Abstract— Sensor-based Human Activity Recognition (HAR)
plays an important role in health care. However, great in-
dividual differences limit its application scenarios and affect
its performance. Although general domain adaptation methods
can alleviate individual differences to a certain extent, the
performance of these methods is still not satisfactory, since
the feature confusion caused by individual differences tends
to be underestimated. In this paper, for the first time, we
analyze the feature confusion problem in cross-subject HAR
and summarize it into two aspects: Confusion at Decision
Boundaries (CDB) and Confusion at Overlapping (COL). The
CDB represents the misclassification caused by the feature
located near the decision boundary, while the COL represents
the misclassification caused by the feature aliasing of different
classes. In order to alleviate CDB and COL to improve the
stability of trained model when processing the data from
new subjects, we propose a novel Adversarial Cross-Subject
(ACS) method. Specifically, we design a parallel network that
can extract features from both image space and time series
simultaneously. Then we train two classifiers adversarially, and
consider both features and decision boundaries to optimize
the distribution to alleviate CDB. In addition, we introduce
Minimum Class Confusion loss to reduce the confusion between
classes to alleviate COL. The experiment results on USC-HAD
dataset show that our method outperforms other generally used
cross-subject methods.

I. INTRODUCTION
Compared to visual-based Human Activity Recognition

(HAR), sensor-based HAR has been widely used in health
monitoring [1], elderly care [2], smart home [3], etc. due
to its greater convenience and better privacy protection.
However, the recognition accuracy suffers a major setback
because of the physiological and behavioral differences be-
tween subjects, like age, Body Mass Index (BMI), behavior
habit, etc. Although this issue can be solved by training a
large number of users’ data to obtain a more generalized
model, data collection and labeling can be tedious, time-
consuming, and even difficult to accomplish in some cases
(e.g. collecting vast data from patients with rare diseases).
Therefore, it is a meaningful and challenging task to solve
cross-subject problems in HAR.

To our knowledge, there are few studies on cross-subject
HAR, and existing solutions are extremely based on do-
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Fig. 1. Two aspects of the feature confusion problem. (a): Features
near the decision boundary may be misclassified during alignment. Red
arrows indicate the direction of feature movement when aligning. (b): The
overlapping features of different classes in source and target domain lead
to confusion, while they are distinguishable in their respective domains.
main adaptation strategy. Domain adaptation aims to transfer
knowledge learned from source domain to the target [4],
so the general domain adaptation methods are often used
to solve cross-subject problems. Some domain adaptation
methods are based on metric learning, such as Maximum
Mean Discrepancy (MMD). The experiment results of Ding
et al. [5] show the effectiveness of MMD in cross-subject
HAR. Another domain adaptation methods are based on
adversarial idea, which is inspired by Generative Adversarial
Networks (GAN) [6]. Based on the structure of traditional
GAN, Soleimani et al. [7] proposed Subject Adaptor GAN
(SA-GAN) to solve cross-subject HAR problem. Another
adversarial domain adaptation method, Domain-Adversarial
Neural Network (DANN) [8], is also used in [5]. However,
the performance of these methods is not satisfactory when
there are large differences between individuals. Because one
of the basic assumptions for general domain adaptation
methods is that features of the same category are closer
between the source and the target [9]. While in cross-subject
HAR scenario, the large differences between individuals can
make feature confusion worse, which may not satisfied the
basic assumption.

The feature confusion problem has two aspects, which is
shown in Fig.1. One is that the features of the target individ-
uals are distributed near the decision boundaries, which may
cause misalignment. This can be defined as Confusion at
Decision Boundaries (CDB) (shown in Fig.1 (a)). The other
is that the features of different categories in source and target
domain are mixed together, leading to misclassification. This
can be defined as Confusion at Overlapping (COL) (shown
in Fig.1 (b)).

In this paper, we propose a novel Adversarial Cross-
Subject (ACS) method to alleviate the feature confusion. We
specially design a parallel network for the cross-subject HAR
task, which can simultaneously extract features from both
image space and time series. As an adversarial method, we
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Fig. 2. The framework of our ACS method. The signal data is transformed
into images as the input of our method. The purple dotted box is the parallel
network specially designed for the cross-subject HAR task. Two classifiers
and MCC loss are used to optimize the distribution of extracted features to
alleviate CDB and COL.

also incorporate the idea of adversarial training to optimize
the distribution. We adversarially train two classifiers to
reduce the number of confusable features near the decision
boundaries, which can alleviate the effect of CDB. And
to alleviate COL, we introduce Minimum Class Confusion
(MCC) loss [10] into our method. By minimizing the degree
of confusion between classes of the confusion matrix, the
effect of COL can be reduced.

Our main contributions in this paper are summarized as
follows:

• To reveal the main difficulties in cross-subject HAR, we
analyze the problem of feature confusion for the first
time, which includes Confusion at Decision Boundaries
(CDB) and Confusion at Overlapping (COL).

• We propose a novel ACS method, which can optimize
the distribution of signal features to alleviate CDB and
COL and improve the stability of the model in cross-
subject HAR.

• To alleviate CDB and COL, we design a parallel net-
work for the cross-subject HAR task specially, which
can extract features from both image space and time
series simultaneously to obtain more stable features.

• We demonstrate the effectiveness of our method on
USC-HAD dataset, and it has higher average accuracy
on target subjects than other generally used domain
adaptation methods.

II. THE FRAMEWORK OF OUR PROPOSED METHOD

In this section, we present the detail of our proposed
method. Firstly, we introduce the parallel network we de-
signed for the cross-subject HAR task. Then we describe the
training process of our proposed method in detail and explain
how we alleviate the effects of CDB and COL. Fig.2 shows
the overall framework of our method.
A. Proposed Parallel Network

Feature extraction network plays a crucial role in HAR
tasks. Single dimensional features are more likely to be
influenced by individual difference. Therefore, we design a
parallel network to extract features from both image space
and time series simultaneously. The input of the parallel
network is a single channel image which is formed by
directly stacking signal channels. It is similar to the Activity

TABLE I
THE STRUCTURE AND PARAMETERS OF PARALLEL NETWORK

Network Structure and Parameters

CNN

Block1 Conv2d in_c out_c k_size s p
1 128 3 1 1

MaxPool2 / / 2x1 1 0

Block2 Conv2d in_c out_c k_size s p
128 256 3 1 1

MaxPool2d / / 2x1 1 0

Block3 Conv2d in_c out_c k_size s p
256 64 3 1 0

MaxPool2d / / 2x1 2x1 0

LSTM hidden_size num_layers
64 3

Image proposed in [11]. Considering the advantages of
Convolutional Neural Network (CNN) in image processing,
we use it to extract the features of image space, so as
to obtain the potential connections between various signal
channels. In addition, we use Long Short-Term Memory
(LSTM) network to extract features from time series due
to the time continuity of human activities. Table I shows the
specific structure and parameters of the parallel network. For
each block of CNN, a batch normal layer and a ReLU layer
are added between the convolution layer and the pooling
layer. After passing through our specially designed parallel
network, the features of image space and time series are
extracted.
B. Training Steps

Based on Maximum Classifier Discrepancy (MCD) strat-
egy [12], we divide the whole training process into three
interrelated steps.

1) Step one: Step one is to use the source domain data to
train the parallel network E and classifier C1 and C2. The
purpose is to enable the model to classify the source domain
samples correctly to obtain task-specific decision boundaries.
If we use (x, y) to denote sample data, (X,Y ) to denote
actual data distribution, and subscripts s and t to distinguish
source domain and target, then the objective of this step is
as follows:

LCE=−E(xs,ys)∼(Xs,Ys)

2∑
n=1

M∑
m=1

I[m=ys] log pn(y|xs), (1)

Lstep1=LCE , (2)

where LCE denotes cross entropy loss, M denotes the
number of classes, and pn(y|xs) denotes the prediction
probability of classifier Cn.

2) Step two: Step two is to maximize the discrepancy
between two classifiers with E fixed. The discrepancy loss
Ldis is defined as follows:

Ldis =
1

M

M∑
m=1

|p1m(y|xt)− p2m(y|xt)|, (3)

where p1m(y|xt) and p2m(y|xt) denote probability output of
C1 and C2 for class m on xt respectively. However, it should
be noted that while enlarging the discrepancy between C1

and C2, their classification effect on xs should be ensured.
Therefore, we add LCE in this step. Thus, the final target
loss function of step two is as follows:

Lstep2 = LCE − Ldis. (4)
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3) Step three: Step three is to train E to obtain features
based on new decision boundaries with C1 and C2 fixed.
This step uses xt only, whose purpose is to align the
extracted target features to the source domain. We do this
by minimizing the discrepancy loss Ldis, which constitutes
a minimax game with the step two.

In order to reduce the effect of COL at the same time,
we introduce MCC loss. MCC loss is a universal domain
adaptation loss function, which can be used to solve the
problem of class confusion. It is defined as follows:

LMCC(Ŷt) =
1

M

M∑
i=1

M∑
j ̸=i

|H̃ij |, (5)

where Ŷt = fθ(Xt) ∈ RB×M and H̃ij denotes the confusion
degree between class i and class j. Here we use fθ to denote
our model and B to denote the size of each batch. H̃ij can
be calculated by Ŷt and Ŷt

T (Specific definition can refer to
[10]). Therefore, the objective of this step is as follows:

Lstep3 = β(Ldis + α

2∑
n=1

LMCC(Ŷnt)), (6)

where β is the weight of step three and α is the weight of
LMCC . They are both hyper-parameters in our experiments.
Subscripts n corresponds to classifier Cn.

III. EXPERIMENTS AND RESULTS

We mainly do experiments on USC-HAD [13], which is a
public dataset using 3-axis acceleration and 3-axis gyroscope
signals for HAR tasks. This dataset contains data from 14
subjects, each of whom performed 12 different activities.
Table II lists the relevant information for each subject in
the USC-HAD dataset.

TABLE II
SUBJECT INFORMATION IN USC-HAD DATASET

Subject Age Height(cm) Weight(kg) BMI(kg/m2)

Sub.1 27 164 43 16.0
Sub.2 26 185 75 21.9
Sub.3 31 169 68 23.8
Sub.4 23 168 52 18.4
Sub.5 35 170 63 21.8
Sub.6 27 164 50 18.6
Sub.7 32 160 75 29.3
Sub.8 22 180 76 23.5
Sub.9 30 171 60 20.5
Sub.10 28 170 75 26.0
Sub.11 34 165 48 17.6
Sub.12 36 170 80 27.7
Sub.13 21 178 71 22.4
Sub.14 49 166 68 24.7
1 The normal BMI range for adults is 18.5 to 23.9.

We mainly studies the feature confusion caused by indi-
vidual differences in this paper. Therefore, when setting up
sub-experiments, our principle is to make the coverage of
individual differences among subjects as wide as possible.
Finally, Subjects 4, 5, 6, 7, 12, and 14 are selected for
subsequent cross-subject experiments, which included both
individuals with similar physical signs and individuals with
large differences. Taking the groups of Sub.4, Sub.6 and
Sub.5, Sub.12 as examples, Fig.3(a) and Fig.3(b) show the
performance of individual differences at the feature level.

In the data preprocessing stage, we reduced the sampling
rate to 20Hz and selected a 5-second sliding window with

(a) Mild confusion (b) Severe confusion

Fig. 3. The performance of individual differences at the feature level.
(a): Mild feature confusion between similar individuals. (b): Severe feature
confusion when individual differences are large.

3-second overlap. All signal channels are simply stacked
together to form a simplified single channel activity image.
In this way, the original signal slice is converted into a
100 × 6 image. We combined "elevator up" and "elevator
down" into one activity in our experiments. This kind of
processing is reasonable in practical scene, because in most
cases we do not need to accurately understand the running
direction of the elevator, and the information contained in a
5-second time slice is not enough to accurately distinguish
them. Therefore, the experiments enumerated in this paper
are all 11-classification tasks.

To verify the effectiveness of the parallel network, we
compared the activity recognition accuracy on target subjects
of using only single-type networks without any cross-subject
methods, as shown in Table III. The results show that the
parallel network we designed has higher average accuracy on
target subjects than single-type networks, which proves the
potential ability of our parallel network in alleviating CDB
and COL.

TABLE III
AVERAGE ACCURACY OF DIFFERENT NETWORKS ON TARGET SUBJECTS

Network Method Average Accuracy

CNN only Only Source 0.6247
LSTM only Only Source 0.5321
Parallel Network(Proposed) Only Source 0.6484

The cross-subject experiment results are shown in Table
IV. The ratio of training set to test set is 8:2. We compared
the effect of our method with several other widely used
domain adaptation methods, such as MMD, Conditional
Domain Adversarial Network (CDAN) [14], DANN and SA-
GAN. In order to obtain more reliable results, we recorded
five optimal values for each group of experiments and
calculated their mean and standard deviation. The results
show that out of all thirty sub-experiments, our method
achieved the best results in 25 groups and achieved the
second best results in 2 groups. In terms of average accuracy,
our method improves the effect by 11.69%, which is much

Fig. 4. Classification accuracy over training epochs of different methods.
The curves of other methods fluctuate greatly or the optimal value appears
at an earlier time.
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TABLE IV
RESULTS OF SSDA EXPERIMENTS ON USC-HAD DATASET

Source Target Only Source
(Baseline) CDAN[14] DANN[8] MMD+

Centerloss[5] SA-GAN[7] ACS
(ours)

Sub.4

Sub.5 0.8174±0.0210 0.8137±0.0084 0.8575±0.0109 0.8072±0.0237 0.8065±0.0125 0.8867±0.0025
Sub.6 0.7991±0.0360 0.8138±0.0147 0.8012±0.0544 0.7815±0.0327 0.7683±0.0312 0.8683±0.0028
Sub.7 0.7519±0.0182 0.7822±0.0034 0.7890±0.0022 0.7769±0.0141 0.7757±0.0146 0.8920±0.0008

Sub.12 0.5922±0.0094 0.6529±0.0077 0.5856±0.0060 0.4917±0.0136 0.5817±0.0092 0.7964±0.0067
Sub.14 0.4925±0.0101 0.5797±0.0040 0.5642±0.0273 0.4595±0.0236 0.5501±0.0225 0.6650±0.0072

Sub.5

Sub.4 0.7791±0.0446 0.8627±0.0114 0.8801±0.0023 0.8041±0.0200 0.8094±0.0219 0.9255±0.0063
Sub.6 0.8138±0.0265 0.8675±0.0071 0.8651±0.0027 0.6909±0.0117 0.7199±0.0094 0.8871±0.0053
Sub.7 0.8129±0.0181 0.8774±0.0033 0.8788±0.0034 0.8540±0.0299 0.8455±0.0176 0.9073±0.0073

Sub.12 0.5723±0.0267 0.5414±0.0016 0.6312±0.0023 0.5320±0.0123 0.5615±0.0238 0.7249±0.0220
Sub.14 0.5245±0.0348 0.6446±0.0073 0.6265±0.0043 0.5183±0.0805 0.5309±0.0414 0.7426±0.0039

Sub.6

Sub.4 0.7571±0.0125 0.7739±0.0067 0.7895±0.0032 0.7055±0.0316 0.7111±0.0244 0.8337±0.0052
Sub.5 0.6593±0.0417 0.6716±0.0205 0.7048±0.0226 0.6633±0.0106 0.6729±0.0231 0.8469±0.0008
Sub.7 0.6963±0.0097 0.7748±0.0024 0.7112±0.0042 0.6824±0.0087 0.7726±0.0096 0.8487±0.0108

Sub.12 0.3994±0.0373 0.4002±0.0267 0.4118±0.0844 0.4796±0.0271 0.4531±0.0349 0.6254±0.0156
Sub.14 0.4378±0.0415 0.4625±0.0437 0.5433±0.0525 0.5309±0.0129 0.5171±0.0466 0.5292±0.0053

Sub.7

Sub.4 0.7043±0.0032 0.7493±0.0032 0.7545±0.0026 0.7364±0.0185 0.7317±0.0046 0.8501±0.0049
Sub.5 0.8470±0.0108 0.8435±0.0018 0.8842±0.0081 0.7921±0.0164 0.7825±0.0114 0.8791±0.0008
Sub.6 0.6867±0.0029 0.6880±0.0071 0.6938±0.0041 0.7607±0.0185 0.6891±0.0082 0.7410±0.0052

Sub.12 0.5219±0.0125 0.5307±0.0046 0.5013±0.0070 0.4867±0.0407 0.5065±0.0241 0.7647±0.0209
Sub.14 0.4979±0.0195 0.5175±0.0108 0.5382±0.0251 0.5077±0.0347 0.5139±0.0337 0.7219±0.0140

Sub.12

Sub.4 0.5225±0.0250 0.5806±0.0361 0.5965±0.0806 0.5663±0.0466 0.5543±0.0533 0.7144±0.0042
Sub.5 0.5365±0.0341 0.5528±0.0183 0.5504±0.0034 0.5401±0.0514 0.5171±0.0305 0.6356±0.0070
Sub.6 0.7116±0.0240 0.7367±0.0079 0.7331±0.0025 0.6783±0.0653 0.6554±0.0211 0.7123±0.0179
Sub.7 0.6945±0.0208 0.6696±0.0167 0.6870±0.0202 0.6249±0.0249 0.6377±0.0214 0.6995±0.0039

Sub.14 0.4329±0.0314 0.3729±0.0818 0.3433±0.0823 0.4154±0.0443 0.3859±0.0622 0.4471±0.0010

Sub.14

Sub.4 0.7375±0.0158 0.7642±0.0099 0.7537±0.0142 0.7191±0.0181 0.7097±0.0175 0.8516±0.0027
Sub.5 0.6900±0.0207 0.7353±0.0424 0.7835±0.0217 0.7000±0.0081 0.7312±0.0196 0.8185±0.0094
Sub.6 0.7287±0.0112 0.7279±0.0213 0.7619±0.0040 0.7223±0.0284 0.7317±0.0245 0.7851±0.0037
Sub.7 0.8117±0.0294 0.7649±0.0218 0.7950±0.0152 0.7208±0.0419 0.7425±0.0288 0.8529±0.0111

Sub.12 0.4240±0.0168 0.5497±0.0169 0.5814±0.0649 0.5388±0.0351 0.5057±0.0377 0.5067±0.0427

Average 0.6484 0.6767 0.6866 0.6429 0.6490 0.7653

higher than other methods. More importantly, other methods
show serious negative effects in some groups due to their
difficulty in solving CDB and COL, which is not present in
our method.

It needs to be emphasized that the training process shows
that our method has a better training curve, that is, with the
increase of training epochs, the accuracy gradually increases
and stabilizes around the optimal value. While the accuracy
curves of other methods may fluctuate greatly, or decrease
as the training process goes on, which exactly reflects their
difficulty in dealing with the problem of feature confusion.
Fig.4 shows an example from our experiments.

IV. CONCLUSION
In this paper, we analyzed the problem of feature con-

fusion and summarized it as two aspects: CDB and COL.
Accordingly, we designed a parallel network and proposed
a novel adversarial method for the cross-subject HAR task.
The experimental results on USC-HAD dataset show that our
method improves the average activity recognition accuracy
of the target subject by 11.69%, which is better than other
general domain adaptation methods.
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