
  

 

Abstract—In this work, we develop a patch-level training 

approach and a task-driven intensity-based augmentation 

method for deep-learning-based segmentation of motion-

corrected perfusion cardiac magnetic resonance imaging (MRI) 

datasets. Further, the proposed method generates an image-

based uncertainty map thanks to a novel spatial sliding-window 

approach used during patch-level training, hence allowing for 

uncertainty quantification. Using the quantified uncertainty, 

we detect the out-of-distribution test data instances so that the 

end-user can be alerted that the test data is not suitable for the 

trained network. This feature has the potential to enable a 

more reliable integration of the proposed deep learning-based 

framework into clinical practice. We test our approach on 

external MRI data acquired using a different acquisition 

protocol to demonstrate the robustness of our performance to 

variations in pulse-sequence parameters. The presented results 

further demonstrate that our deep-learning image 

segmentation approach trained with the proposed data-

augmentation technique incorporating spatiotemporal 

(2D+time) patches is superior to the state-of-the-art 2D 

approach in terms of generalization performance. 

 

I. INTRODUCTION 

Automated image-analysis approaches based on deep 

learning hold significant promise to enable rapid and 

objective quantification of cardiac magnetic resonance 

(CMR) imaging datasets by eliminating the need for any 

manual steps specifically in the segmentation of CMR 

images [1]. In the context of stress/rest perfusion CMR 

imaging for diagnosis of ischemic heart disease, such 

approaches have shown promise in removing the 

cumbersome step of contouring myocardial borders given 

the dynamic (2D+time) changes in myocardial contrast 

during the first pass of the contrast agent [2,3,4]. 
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Modern neural networks may suffer from miscalibration 

where model confidence and accuracy deviate from each 

other. Thus, caution is needed on the potential 

overconfidence that may be incorrectly implied in 

segmentations generated by deep learning models. An 

accompanying uncertainty assessment of the deep learning-

based pipeline may help add an interpretable measure of 

confidence which may, in turn, help prevent the end-user 

from interpreting the results without any nuance in this 

regard. Furthermore, uncertainty assessment of deep 

learning-based applications in medical imaging is essential 

in understanding the performance bounds and limitations of 

the underlying models. Uncertainty visualization of deep 

neural networks has been studied in multiple modalities [5] 

including CMR [6]. In this work, we introduce a method to 

extract image-based (aleatoric) uncertainty based on patch-

level training to detect out-of-distribution (OOD) test CMR 

data. 

OOD test data detection can play an important role in 

clinical imaging applications where clinicians (the end-user) 

interact with deep learning-based tools. For instance, an 

automated segmentation model can alert the end-user based 

on a human-in-the-loop framework wherein the end-user is 

asked to check the segmentation quality only for the OOD 

test data on which the network has shown a low level of 

confidence. Based on this framework, the human-in-the-loop 

avoids the burden of having to verify the machine-generated 

segmentation (e.g., myocardial contours) for every single 

time frame, and instead focus on quality-control of a small 

subset of the imaging data that is detected to be OOD.  

Our contributions in this work can be summarized as 

follows: 

 We propose a spatiotemporal (2D+time) deep learning 

method with patch-level training using a spatial sliding-

window to segment motion-corrected CMR perfusion 

images. 

 We train the patch-level network using a task-driven 

augmentation technique, including an intensity 

modulation method, for improved generalization 

(robustness) of the network.  

 To evaluate the robustness of the proposed patch-level 

training method against variations in MRI pulse sequence 

parameters, we trained/validated our model on a T1-

weighted dataset (acquired internally at our center) and 

tested it on T2/T1-weighted CMR images obtained at an 

external center.  
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 Using the fact that a pixel belongs to multiple patches 

during patch-level testing, we obtain the network’s image-

based uncertainty in segmenting the myocardium with a 

2D uncertainty map 𝑈𝑀 and locate the uncertainty in 

form of a 6-sector segmentation model according to the 

established American Heart Association (AHA) 

segmentation model.  

 Using the uncertainty map 𝑈𝑀 generated by our proposed 

method, we quantify the overall uncertainty of 

segmentation (denoted by 𝑈) which quantifies the patch-

level network’s confidence in the segmentation output. 

Next, we establish a classifier based on 𝑈 to identify OOD 

data in the test dataset. The threshold involved in 

designing this classifier is determined based on the 

absolute quantification of myocardial blood flow (MBF). 

To the best of our knowledge, this work is the first to apply 

patch-level training for image-based uncertainty assessment 

and to use intensity-modulated data augmentation for deep 

learning-based segmentation of myocardial perfusion CMR 

datasets. 

II. METHODS 

A. Dataset 

We used a two-center short-axis respiratory motion-

corrected perfusion CMR dataset acquired at 3T with 

different pulse sequences. For all of the volunteer and 

patient imaging studies, local Institutional Review Board 

(IRB) approval and written informed consent was obtained 

before each imaging exam/study. Training and validation of 

the deep neural network were done on 96 stress/rest 

perfusion studies with suspected ischemia using an SR-

prepared FLASH (RF-spoiled gradient recalled echo) pulse 

sequence with T1-weighted image contrast acquired at 3T. 

Testing was performed on 40 independent adenosine-stress 

CMR perfusion studies obtained at an external site using an 

SR-prepared balanced steady-state free precession (bSSFP) 

pulse sequence with T2/T1-weighted contrast (also acquired 

at 3T). There was no leak from the training/validation set to 

the test set.  

Original raw perfusion series was truncated to 30-time 

frames using previously proposed method. Then, we 

spatially upsampled the time-series and cropped the 

perfusion series at the center of the left ventricular (LV), 

resulting in a size of 128×128×30 for each slice. Each image 

volume was normalized to an intensity range of [0,1]. 

For training/validation images, ground truth segmentation 

labels for myocardium and right ventricular (RV) were 

available. LV masks were obtained from the myocardium 

masks. Hence, the CNNs were trained to perform the 

segmentation task in the heart for the following classes: 

myocardium, LV, RV, and background.  

B. Patch-level model and training 

We used a vanilla UNet as the convolutional neural 

network (CNN) [7]. The input to the UNet is 3D patches 

extracted from the motion-corrected perfusion time series 

using a spatial sliding window. We call this network that we 

propose patch3-UNet and perform the segmentation from 3D 

patch to 2D patch with the preserved spatial size. The output 

of patch3-UNet is 2D segmentation of the 3D patches as a 

result of working with motion-corrected images. Each pixel 

at the output of patch3-UNet CNN has a probability of 

belonging to one of the four classes described above, also 

known as softmax probability. In patch-level training, 

patches of the desired size are extracted from the input 

images with chosen stride and fed to the network, making 

each 3D patch an independent data sample for the network. 

Likewise, during testing, the network segments the 3D 

(2D+time) patches and outputs the 2D segmentation result 

for each patch in the same size. Then, patches are combined 

back together to yield the final segmentation result. 

Generally, overlapping patches are preferred over non-

overlapping to minimize the edge effects during testing.  For 

the pixels that are in multiple patches, we take the mean of 

the myocardium softmax probabilities at each pixel. Fig 1 

summarizes a test image’s segmentation process using the 

patch-level method. 

Patch-level training makes the network more robust to 

overfitting by “increasing” the dataset’s size. For example, it  

 

 
Figure 1. The data processing pipeline for the proposed patch-level approach aimed at segmentation of dynamic CMR perfusion image series. 

First, the motion-corrected 2D+time perfusion image series is decomposed into spatiotemporal patches by applying a spatial sliding window (further 

explained below). The decomposed patches are then fed to a multi-channel vanilla U-Net architecture, which jointly processes dynamic time frames for 

each patch and detects the myocardial pixels within each 2D patch. The segmented individual patches (output of the network) are combined to yield the 

segmentation result. 
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leads to a 9-fold increase in the training set size when 

utilized with a patch- and stride-size of 64 in each spatial 

dimension when each spatial dimension of the input time-

series is 128 (as in Fig 1). Also, with an optimal patch-size 

choice, patch-level training enables the network to 

simultaneously focus on the image’s local and global details. 

With the spatial sliding window approach, more patches are 

extracted from the center of the image series than the edges, 

which is helpful because we localize our images such that 

the heart is in the middle. Besides, there is no redundancy in 

the extracted patches, such as an outside-of-the-ROI patch, 

since our experiments showed that using a relatively larger 

patch size is favorable for the segmentation problem we aim 

to solve. We optimized cross-entropy loss with Adam 

optimizer for all models we trained. Model selection was 

made using early stopping according to the segmentation 

performance on the validation set. 

C. Advanced Data Augmentation 

We first apply commonly used augmentation techniques, 

including various affine transformations (rotation, scaling, 

vertical and horizontal flips, image scaling, and shear) and 

additive white noise to enhance our training set. In addition, 

we introduce the following data-driven techniques to 

augment the perfusion images: 1) Perlin noise: Perlin noise 

is used in various computer vision applications and has a 

natural-seeming and smooth texture. 2) Intensity 

modulation: we proposed a task-driven augmentation 

technique with the motivation that intensity-based 

augmentation techniques have been shown to improve the 

shape-based representation capabilities of CNNs in 

computer vision applications [8,9]. Further, different 

myocardial intensity levels can be induced by modulating 

the images with the intensity gradient maps shown in Fig 2, 

including patterns similar to lateral-wall signal drop-off 

often seen in raw perfusion images. Finally, we employed 

contrast augmentation with a probability of 0.50 for each 

training time series in the advanced augmentation setting. 

These techniques vary the texture and contrast levels of the 

training images and improve the generalizability of patch3-

UNet trained on FLASH and tested on the bSSFP dataset. 

D. Evaluation 

We evaluate the trained models on the held-out test set 

and report the myocardium Dice similarity coefficient 

between the manual expert labels and the automatic labels 

found by the proposed pipeline. Further, we report 

myocardial blood flow (MBF) correlation between manual 

and automatic segmentation based on American Heart 

Association (AHA) 48-segment model using Fermi-

constrained deconvolution. We average the 48-segment 

MBF results to obtain the slice-averaged MBF numbers. 

As a baseline method, we trained another patch-level 

UNet using the exact same architecture but with 2D patches, 

which we name patch2-UNet to compare it with the 

proposed p 

atch3-UNet. We aim to assess how using 3D patches 

affects the generalization of the patch-level method 
 

 
 

 

 

 
Figure 2. The proposed advanced data-augmentation strategy. The proposed augmentation technique is performed in three steps. First, various affine 

transforms (rotation, scaling, vertical and horizontal flips, image scaling, and shear) are applied to the 2D+time series CMR perfusion images. The resulting 

image series is then modulated with elaborately designed intensity maps. Finally, both temporally-varying Gaussian noise and Perlin noise are added to the 

transformed time series images. Perlin noise and intensity modulation vary the texture and contrast levels in the time-series images. 
 

 
 

this information is used to create an uncertainty map to assess how 
uncertain the model is. b) bar plot illustrates the number of patches that 

each pixel is in during the spatially sliding-window analysis. Projection 

in red shows that the center pixel is ins 1024 patches. 
 

Figure 3. Uncertainty visualization 

using the proposed patch-level 

method employing a novel spatial 

sliding-window approach. (a) Patch-

level testing enables the same region 

(see the orange volume) to be 
segmented multiple times. Therefore, 

we get multiple solutions for the same 

myocardium (myo) segmentation, and 
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when tested on the external test set obtained with a different 

pulse sequence. Also, we hypothesize that the proposed 

patch3-UNet method improves the network’s performance 

by learning the temporal connections inherent in the 

perfusion image series.  Following previous studies, patch2-

UNet was trained with 2D patches extracted from the peak-

enhancement LV frame of the perfusion time-series [4]. The 

peak-enhancement LV frame of each time series is detected 

using earlier methods [10]. Both patch2-UNet and patch3-

UNet were trained with and without the proposed 

augmentation techniques to evaluate the effect of the 

proposed augmentation approach. In total, we trained 4 

networks corresponding to 4 different input dimension and 

augmentation settings while keeping the same setup with no 

changes made to the vanilla UNet architecture. 

E. Uncertainty Estimation & Out-of-Distribution (OOD) 

Test Data Detection 

When utilized with a small stride during testing, patch-level 

prediction enables the same pixel to be segmented multiple 

times by the network. Thus, the number of softmax 

probabilities obtained for each pixel depends on the number 

of patches that pixel is in. We define the set Γ(𝑥) which is 

the set of all the patches that have pixel 𝑥 in them thanks to 

the spatial sliding window approach. The bar plot in Fig 3b 

illustrates how the cardinality of Γ(𝑥) changes depending on 

the pixel location. Different voting schemes to decide the 

label of pixel 𝑥 exist, such as 1) thresholding softmax 

probabilities first and then getting the majority vote, 2) 

getting mean of the mean of the softmax probabilities and 

then threshold (experiments with these methods are 

described in the Results section). Regardless of the voting 

fashion, let us define the segmentation output of the network 

as 𝑏(𝑃𝑖(𝑥)), where 𝑃𝑖(𝑥) is the 2D matrix of myocardium 

probabilities (softmax output) for slice 𝑖 and 𝑏(. ) is the 

binarization operation applied at each pixel 𝑥. 

In addition to the thresholded myocardial segmentation 

𝑏(𝑃𝑖(𝑥)), the network outputs an uncertainty map thanks to 

patch-level training. We use the multiple softmax 

probabilities of each pixel to create an uncertainty map. 

𝑈𝑀𝑖(𝑥) is the 2D segmentation uncertainty map of image 

slice 𝑖 and standard deviation of the softmax outputs of 

distinct patches at each spatial location 𝑥. Uncertainty map 

𝑈𝑀 𝑖 shows the segmentation agreement and reveals the 

areas where the network is challenged the most when 

segmenting perfusion time series slice 𝑖. If a pixel 𝑥 is 

segmented as myocardium most of the time across several 

patch segmentations, then the network is confident at that 

pixel. When the network is indecisive, however, the same 

region collects varying probabilities from different patches. 

Therefore, this region has higher intensities in the 

uncertainty map and consequently highlighted as unsure. Fig 

3a shows how the same area is segmented several times by 

being in many patches. 

To quantify uncertainty, we sum up the values in each 6 

AHA subsegment of the uncertainty map 𝑈𝑀𝑖 and normalize 

by myocardium area of the subsegment to make the 

uncertainty metric invariant to the heart’s size. RV 

segmentation ability of the network assists in RV insertion 

point (RVIP) detection and subsegment division. Binary 

mask of each subsegment 𝑘 is denoted by 𝑀𝑘 (see colorful 

subsegments in Fig 5). Quantified uncertainty 𝑈𝑖 of the 

acquisition slice 𝑖 is the mean uncertainty of the 6 AHA 

subsegments: 

𝑈𝑖 =
1

6
∑  

6

𝑘=1 

1

𝐴𝑘

∑ 𝑈𝑀𝑖(𝑥)

𝑥 

⊙  𝑀𝑘(𝑥) (1) 

 

𝐴𝑘 = ∑  𝑏(𝑃𝑖(𝑥)) ⊙ 𝑀𝑘(𝑥)

𝑥 

(2) 

 

 
Figure 4. Segmentation results. a) Stress perfusion CMR time frames acquired in a patient with ischemic heart disease (stress-induced perfusion 

deficit) are shown at three stages of the first pass of the contrast agent (RV enhancement, LV enhancement, and myocardial enhancement) for three slices 

(Basal, Mid, Apical). The yellow arrows point to the perfusion deficit. b) Segmentation results in the same dataset for two augmentation settings: proposed 
and conventional, together with manual-expert segmentation. Both conventional and proposed augmentation results employ the proposed patch-level 

training by extracting patches from the full-ROI images. Segmentation results are accompanied with the uncertainty maps which is a byproduct of the 

proposed patch-level network. A higher value in the generated uncertainty maps (yellow/white colors) demonstrates high uncertainty at a pixel level. 
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where Ak is the area of the subsegment 𝑘 –the number of the 

pixels in the segmentation result 𝑏(𝑃𝑖(𝑥)) after masked with 

𝑀𝑘(𝑥)– and ⊙ is the Hadamard product. 

Because the underlying assumption on the training images 

is respiratory motion correction, we are encouraged to show 

where it fails in the test set and, therefore, detect unreliable 

segmentation, which would be OOD data. To define the 

ground truth OOD labels accurately, we use the masks 

generated by the baseline state-of-the-art 2D network 

patch2-UNet and label the cases having > 5% discrepancy 

between the 2D automatic and ground truth slice-averaged 

myocardial blood flows (MBFs) as OOD. The intuitive 

explanation is simple, if the mask generated by the 2D 

network using the information from a single time frame has 

a certain MBF error, then that frame is not informative 

enough about the flow through the myocardium, implying 

that the motion correction possibly fails. 

Lastly, we establish a classifier between the detected 

OOD labels and 1 − 𝑈 (to get positive correlation) values 

from the patch3-UNet with advanced augmentation. Then, 

we set a threshold 𝑡 through receiver operating characteristic 

(ROC) curve such that slice 𝑖 having 1 − 𝑈𝑖 < 𝑡 is labeled as 

“uncertain”. Further, we locate the source of uncertainty in 

the OOD cases according to AHA’s 6-segment model before 

referring them to the end-user for segmentation revision. So, 

the human-in-the-loop spends time correcting only for one 

AHA subsegment. The most challenging subsegment region 

is identified as having the uncertainty map subsegment 

having the highest total variation (TV). 

In short, 𝑈𝑀 𝑖 provides a visual map for how confident the 

network is in its segmentation result, whereas 𝑈𝑖 indicates –

with a single number– where the segmentation of slice 𝑖 
stands among the others in terms of network confidence in 

the test set. 

III. RESULTS 

A. Effect of patch and stride size & voting method 

We experimented with different patches and stride sizes. 

Patch size of 64 turned out to result in the best from the set 

{16,32,64} according to the validation set performance. The 

networks trained with smaller patch sizes had difficulty 

focusing on global details and had errors. 

We used different stride sizes for segmentation and 

uncertainty map results. Stride size of 50% of the patch size 

(32-pixels) was utilized in either spatial direction for 

segmentation during training or testing. We used 3.125% of 

the patch size (2-pixels) as step size for uncertainty map 

creation. Using a tiny stride minimized edge effects and 

allowed a single pixel to be segmented many times. 

Therefore, the uncertainty maps were created with the 

knowledge from multiple segmentation and reflected the 

challenging regions in the images. Center pixels being in 

more patches than the edge pixels were favorable given the 

images were cropped at the center of the LV cavity. Still, the 

pixels at the edge of the ROI were in an adequate number of 

patches to detect uncertainty accurately since we utilized a 

very small stride. 

We experimented with 1) majority vote, 2) mean of the 

softmax probabilities voting methods. In majority vote, 

softmax probabilities are rounded at each pixel, resulting in 

0’s (not myo) and 1’s (myo). For segmentation, if 1’s are 

more than 0’s that pixel is segmented as myo and vice versa. 

In case of a tie, we tossed a coin. We calculated the standard 

deviation of the decisions after binarization operation for 

uncertainty maps. As a second method, we used the mean of 

softmax probabilities of each patch that have pixel 𝑥 in them 

and then applied the binarization for segmentation result. For 

uncertainty maps, we obtained the standard deviation of 

softmax probabilities in the set Γ(𝑥). The results did not 

exhibit a significant difference, and we proceeded with the 

 

 
Figure 5. Uncertainty visualization and localization on two challenging slices. Patch3-UNet takes the 2D+time perfusion series decomposed into 

patches as input and generates the segmentation (myocardial contours) as well as the uncertainty map. The network is also capable of segmenting the right 
ventricle (RV) and detection of the RV insertion point (RVIP). Subsequently, the segmentation result is divided into 6 sectors according to the established 

American Heart Association (AHA) model. Total variation (TV) of each subsegment in the uncertainty map is calculated, and “uncertain segmentation” is 

localized as the subsegment that has the highest TV. (a) shows a challenging Basal slice with a thin layer of epicardial fat in the lateral wall (shown by 
green arrows on the perfusion series images). Although the segmentation result is not contiguous, patchUNet is mostly uncertain in subsegment 5, which is 

the most challenging sector to segment. (b) shows a Mid slice with small LV blood pool (end systole) from a different patient. As shown on the uncertainty 

map, the network struggles mostly in the septal and inferior sectors which are very difficult to differentiate from the RV blood pool even for an expert 
reader. Nevertheless, the proposed Patch3-UNet approach segments this challenging test-case successfully. 
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mean of the softmax probabilities in the rest of the findings. 

B. Myocardium Segmentation 

We trained four networks in total: patch2-UNet and patch3-

UNet for both proposed advanced augmentation and 

conventional augmentation. Mean Dice score for patch3-

UNet with advanced data augmentation was 0.86 on 120 test 

set slices (3 acquisition slices of 40 stress perfusion studies). 

We also summarize sector-wise Dice scores in Table 1 for 

slice-averaged, 6-sector, and 12-sector (2 radial, 6 angular 

division) cases. The subsegment division was done with the 

help of RVIP detection ability of the networks. The gap 

between the proposed method Dice and the compared 

methods widens as we go from slice-averaged to the 12-

sector case. Also, segmentation results of two patients (3 

acquisition slices each) are shown in Fig 4. 
Table 1. Summary of Dice scores for the test dataset. This table 

summarizes the mean Dice scores across 40 stress perfusion CMR exams 

(40 patients; 120 myocardial slices in total) for different augmentation and 

input-patch dimension settings. 

 

C. Perfusion Quantification 

We quantified myocardial blood flow (MBF) with Fermi-

constrained deconvolution using American Heart 

Association (AHA) 48-sector (24 segment and 2 radial 

divisions) model and averaged 48-sector MBF numbers to 

obtain transmural MBF numbers for each slice. Comparison 

of MBF numbers obtained from automated analysis using 

patch3-UNet and patch2-UNet (trained with the advanced 

augmentation) vs. the ground truth masks showed very 

strong correlation (𝑅2 >0.95 for both). However, Bland-

Altman analysis between patch3-UNet and ground truth 

masks exhibited a mean value of 0.007, and limit of 

agreements (at + and −1.96 standard deviation away from 

the mean) of 0.174 and −0.161. In contrast, Bland-Altman 

analysis between patch2-UNet and the same ground truth 

masks exhibited a mean value of −0.073, and limit of 

agreements of 0.200 and −0.347. In other words, patch3-

UNet exhibited tighter limits of agreement vs. ground truth. 

D. Uncertainty Map Visualization & OOD Detection 

Fig 5 shows two examples of patch3-UNet’s segmentation 

and uncertainty maps outputs on two challenging test 

acquisition slices. The process of localizing the uncertainty 

in challenging cases using RVIP and uncertainty maps is 

also summarized. 

Fig 6 shows the correlation between Dice and 1 − 𝑈 

values, red dots corresponding to out-of-distribution (OOD) 

acquisition slices labels. Test data labels that was not 

suitable for the trained model (i.e., OOD labels) were 

obtained where 2D patch-level network has >5% myocardial 

blood flow (MBF) error with respect to ground truth 

segmentation, hence implying possible failing of motion 

correction. ROC analysis between OOD data labels obtained 

using patch2-UNet with advanced augmentation and 1 − 𝑈 

values resulted in an AUC of 0.936, specificity of 0.918, 

and sensitivity of 0.826. The optimal operating point of the 

ROC curve was 𝑡 = 0.80, indicating that slices having 1 −
𝑈 < 𝑡 are classified as OOD by the proposed method. The 

mean Dice score for the test cases having 1 − 𝑈 < 𝑡 was 

0.81 which would be the “unreliable” segmentations 

generated by the model. Likewise, the mean Dice score for 

the “reliable” test slices was 0.87, i.e., test cases that have 

1 − 𝑈 ≥ 𝑡. As shown in Table 1, the proposed method 

achieved a mean Dice score of 0.86 across all 40 stress 

perfusion CMR test data.  

In Fig 6, we also demonstrate two outlier slices that do not 

have a 5% MBF error with patch2-UNet but having very 

high uncertainty (small 1 − 𝑈). These slices are also OOD 

data but with a different definition, e.g., small blood pool 

and subtle fat to distinguish in the lateral wall. Other 

definitions of OOD can be used for these slices. Still, the 

proposed method is uncertain in these slices. 

Figure 6. Out-of-distribution (OOD) test data detection. The plot 
shows the Dice score vs. 1-U metric. U is defined to quantify the uncertainty 
from the uncertainty maps with a myocardium area-normalized approach 
against variations in the heart size. Red circles show the points where 2D 
patch-level network has >5% myocardial blood flow (MBF) error with 
respect to ground truth segmentation. Red asterisks are the points where 3D 
patch-level network has >5% MBF error with respect to expert contouring. 
Outliers 1 and 2 highlighted on the plot are the two challenging test-cases 
shown in Fig 5.  They result as false positives in the classifier which detects 
poor motion correction OOD since they do not have any motion correction 
issues. Indeed, they are also OOD data, but they have their own challenging 
properties as explained in Fig 5 (small blood pool and thin epicardial fat in 
the lateral wall) where they would be detected as OOD when described with 
another definition not based on 2D MBF flow.  

IV. DISCUSSION 

In this work, we have demonstrated that by employing the 

proposed patch-based 2D+time training approach, the 

performance of UNet-based deep-learning techniques for 
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segmentation of motion-corrected perfusion CMR datasets 

can be improved considerably. To the best of our 

knowledge, this work is the first to apply patch-based 

network training and intensity-modulated data augmentation 

for CNN-based segmentation of myocardial perfusion CMR 

datasets.  

A limitation of the proposed method is that it is trained 

with the complete first-pass time series images. Thus, further 

experiments are needed to assess its robustness in datasets 

that are partially truncated in time. Also, we used the raw 

signal intensities in the deconvolution-based quantification 

of MBF; therefore the derived blood flow numbers (and 

hence the thresholds) may be confounded by saturation 

effects in the arterial input function. This issue can be 

remedied by conversion of signal intensities to contrast-

agent concentration prior to Fermi-constrained 

deconvolution. Finally, we did not evaluate the performance 

of the proposed method in test data acquired at a field 

strength other than 3T. Therefore, our future work involves 

testing of patch3-UNet on data acquired at 1.5T.  
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