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Abstract—The dark-rim artifact (DRA) remains an important 

challenge in the routine clinical use of first-pass perfusion (FPP) 

cardiac magnetic resonance imaging (cMRI). The DRA mimics 

the appearance of perfusion defects in the subendocardial wall 

and reduces the accuracy of diagnosis in patients with suspected 

ischemic heart disease. The main causes for DRA are known to 

be Gibbs ringing and bulk motion of the heart. The goal of this 

work is to propose a deep-learning-enabled automatic approach 

for the detection of motion-induced DRAs in FPP cMRI datasets. 

To this end, we propose a new algorithm that can detect the DRA 

in individual time frames by analyzing multiple reconstructions 

of the same time frame (k-space data) with varying temporal 

windows. In addition to DRA detection, our approach is also 

capable of suppressing the extent and severity of DRAs as a 

byproduct of the same reconstruction-analysis process. In this 

proof-of-concept study, our proposed method showed a good 

performance for automatic detection of subendocardial DRAs in 

stress perfusion cMRI studies of patients with suspected 

ischemic heart disease. To the best of our knowledge, this is the 

first approach that performs deep-learning-enabled detection 

and suppression of DRAs in cMRI.   

 
Clinical Relevance— Our approach enables clinicians to 

provide a more accurate diagnosis of ischemic heart disease by 

detecting and suppressing subendocardial dark-rim artifacts in 

first-pass perfusion cMRI datasets.  

I. INTRODUCTION 

First-pass perfusion (FPP) cardiac magnetic resonance 
imaging (cMRI) has been established as a validated technique 
to detect myocardial ischemia and hemodynamically 
significant coronary artery disease [1-4]. Visual inspection of 
FPP cMRI is usually the preferred clinical method to detect the 
perfusion defects in patients with suspected ischemic heart 
disease. However, the effectiveness of FPP cMRI can often be 
limited by a notorious image artifact called “dark-rim artifact” 
(DRA). DRA appears as a dark band or rim along the 
subendocardial border of the left ventricular (LV) cavity in the 
FPP time series. It is most visible when there is a sharp 
transition in signal intensity between the blood pool and 
myocardium. An example of DRA is shown in Fig. 1. 

DRA can easily hide or mimic the true perfusion defects 
which also appear darker than the surrounding myocardium. 
Unlike true perfusion defects, DRAs generally disappear after 
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several frames following the peak LV-enhancement phase, 
and therefore could be distinguished by expert readers by 
careful examination of their spatio-temporal behavior. 
However, subjective interpretation of FPP cMRI image series 
can lead to variabilities between different readers and 
inaccurate diagnosis [5]. In addition to the challenges that 
DRA creates for visual (qualitative) assessment of cMRI data, 
it can also cause significant errors in the quantified myocardial 
blood flow by influencing the temporal behavior of signal 
intensity in subendocardial pixels [6, 7]. For these reasons, it 
is important to have the necessary information about the 
presence of DRA in FPP cMRI image series in order to enable 
accurate and reliable diagnosis.  

DRA is known to be primarily caused by two contributing 
factors: (a) Gibbs ringing due to truncated coverage of k-space 
especially in Cartesian-sampled protocols [6], and (b) the bulk 
motion of the heart [8]. Gibbs ringing is a general problem in 
cMRI studies because of the practical requirement to exclude 
some of the high-frequency content (i.e., truncation) in k-space 
during data acquisition. This phenomenon can be 
characterized using point spread function (PSF) analysis 
[6,12]. On the other hand, motion-induced DRA occurs 
because of a similar PSF effect [8]. 

In the past decade, several techniques have been proposed 
that attempt to suppress or eliminate the DRA by post-
processing [9, 10] or using optimized data acquisition 
including non-Cartesian sampling of k-space [11-13]. 
However, these techniques primarily focus on Gibbs-ringing-
induced DRA rather than motion-induced DRA. Moreover, 
they do not provide any information about the likely location 
of DRA in a specific FPP image. Recently, Ta et al. suggested 
using pixel-wise fully-quantitative myocardial blood flow 
analysis to differentiate regions with DRA from true perfusion 
defects [14].  However, fully quantitative assessment of blood 
flow is currently not performed in a majority of  clinical 
scenarios, which limits the applicability of this approach in 
routine clinical settings, i.e., outside of research-focused 
medical centers.  

In this work, we propose a new deep-learning-enabled 
methodology that can automatically detect motion-induced 
DRA in a wide range of perfusion cMRI datasets by 
performing multiple reconstructions of the FPP cMRI image 
series (acquired k-space data) with different temporal 
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windows, which influences the presence and severity of 
motion-induced DRAs. We employ a 3D convolutional neural 
network (CNN) to automatically detect the subendocardial 
layer and use this segmentation to tease out the effect of 
cardiac motion at a pixel level. To this end, for each time 
frame, myocardial regions that are reconstructed with different 
temporal windows are stacked, and pixel-wise slopes along the 
“reconstruction dimension” are computed.  A byproduct of this 
approach is the ability to obtain a modified reconstruction of 
the same dataset that may result in reduced DRA.   

II. METHODS   

A. Motion-induced Dark-Rim Artifacts  

In a previous study[8], bulk motion of the heart is shown 
to result in a similar PSF of that of k-space truncation. 
Reconstructed image can be described as a convolution of 
underlying true image and the motion-induced PSF: 

𝐼𝑣 = |𝜌𝑣| = |𝜌0 ∗ ψm|        (1)
      

where 𝜌0 is the true image and ψm is the PSF due to 
motion. After analytical calculation of PSF for given 
parameters (field of view, velocity, number of readouts, 
duration etc.) with the assumption of constant 1-D motion, the 
study shows that the length scale of DRA is proportional to 
width(W) of the main lobe of this PSF which is calculated by 

𝑊𝑚𝑎𝑖𝑛 = √2𝑋𝑝ℎ𝜈𝜏        (2) 

where 𝑋𝑝ℎ is field of view (FOV) along phase-encode 

direction, 𝜈 is velocity and 𝜏 is time elapsed during acquisition. 
This equation suggests that fast motion and longer temporal 
window result in an increased severity of DRA. 

Although this is an oversimplified formulation for much 
more complicated motion characteristics of the heart (3D non-
rigid motion, rotation, contraction etc.), (2) demonstrates that 
velocity and temporal window play the main role in the 
characteristics of motion-induced PSF. Based on this, our 
approach uses this difference in motion characteristics at 
different parts of k-space to detect which myocardium 
segments have DRA. 

To verify that using different parts of k-space results in 
different motion-induced DRA, we did dynamic numerical 
simulations that mimic systole and diastole phases of cardiac 
cycle. The dynamic numerical phantom is prepared by 
dividing k-space into 7 divisions and filling each division with 
k-space from a different snapshot of the phantom heart. Fig. 2 
visualizes this procedure with 5 k-space divisions for 
simplicity.  

B. Data Acquisition 

Typical data acquisition in FPP cMRI includes an ECG 
signal for cardiac gating, a Saturation-Recovery (SR) pulse for 
magnetization preparation, and a Gradient Echo (GRE) pulse 
sequence to fill k-space of one frame from each slice as 
explained in Fig. 2. Usually, 3 slices from the heart are 
acquired between 2 heart beats. Depending on the repetition 
time (TR) and total number of readout lines (Nreadout), the full 
temporal window for each frame can vary between 60ms-
150ms. The amount of motion captured during the temporal 

window determines the characteristics of motion-induced 
DRA (e.g. width, intensity, dip amplitude etc.) as described in 
the previous section.  

 It should be noted that motion characteristics are different 
in each cardiac phase as heart keeps contracting/relaxing 
during data acquisition. As shown with cartoon image of heart 
in Fig. 2, the left side (i.e. the beginning of k-space) and the 
right side (i.e. the ending of k-space) collect data from slightly 
different cardiac phases. For example, the diameter of blood 
pool and thickness of myocardium are different at the 
beginning and ending of systole phase. Moreover, the rate of 
change is larger at the beginning of contraction, which 
contributes more to the motion-induced DRA in the 
reconstructed image with full temporal window. This prior 
information will be used during processing of slope maps in 
the proposed workflow. 

C. Automated Myocardium Segmentation with 3D CNN 

Since DRAs occur within the myocardium, it is important 
to extract this region of interest (ROI) with a fast and effective 
method to narrow down the potential location of DRA in the 
reconstructed images. We used a 3D CNN technique 
previously proposed by our group [15] due to its ability for fast 
and accurate segmentation. The network also outputs two right 

Figure 2. Typical data acquisition in a FPP cMRI study. 3 slices 

are acquired between 2 heart beats in an undersampled way for faster 

acquisition. Each slice is SR-prepared and a cartesian FLASH 
sequence is used to fill the k-space. Acquiring k-space data for one 

frame takes 60 ms to 150 ms. As shown with cartoon images, the 

heart keeps moving as k-space is being filled. This motion results in 
DRA whose characteristics are dependent on the type and amount of 

the motion. Contraction is exaggerated in cartoon images for better 

visualization. 
 

 

 
 

 

 

Figure 1. An example of a subendocardial dark-rim artifact 

(DRA) in first-pass perfusion (FPP) cardiac MRI (cMRI). (a1): a 
time-frame from FPP cMRI image series with Cartesian acquisition. 

As highlighted by the red arrow, there is a DRA in septal wall along 

the phase-encode (PE) direction, which could be confused with a true 
perfusion defect. Panel (a2) shows the ground-truth for the same time-

frame, which does not have a DRA due to the properties of the point 

spread function of radial k-space acquisition. 
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ventricle (RV) insertion points, which allows for automatic 
segmentation of myocardium in the FPP image series. 

D. Proposed Workflow 

The main idea of our algorithm relies on the gradual 
changes in motion characteristics of the acquired data from 
one side of k-space to the other. By investigating the behavior 
of each pixel for different temporal windows, we can gather 
information about the location of DRA. The proposed 
algorithm is summarized in Fig. 3.  

The first step of the algorithm is to obtain the full k-space 
from undersampled data by using a parallel imaging technique 
such as GRAPPA [16]. As described earlier, reconstructing the 
frames with full (i.e. 100%) temporal window captures more 
amount of motion. This means that the motion characteristics 
at the beginning and the ending of k-space are averaged during 
conventional reconstruction.  

After that, the full k-space is windowed by 10 different 
temporal windows (with temporal width of 65% of full k-
space) with a sliding window approach. As these windowed k-
spaces contain data from different time stamps of acquired 

data, each of these 10 versions will have different motion 
characteristics and different motion-induced DRA.  

Each windowed k-space is then reconstructed into 
corresponding 2D+time image series by applying partial 
Fourier reconstruction. Each reconstructed image series with a 
different temporal window is called a “realization”. To obtain 
ROI for each frame, one of the image series is input to the 3D 
CNN myocardium segmentation network. It is sufficient to use 
output masks from any one of the realizations since the 
reconstructed images with different temporal windows do not 
differ from each other significantly in terms of location of 
myocardium since the total motion is generally at subpixel 
level. Myocardium from each image series is extracted by 
multiplying the masks with each 2D+time realization. As 3D 
CNN network will also output the RV insertion points, we will 
be able to divide the myocardium into 6 AHA segments by 
using these insertion points when processing the slope maps. 

Then, the same frames that are reconstructed with different 
temporal windows are stacked along 3rd dimension. Each 
frame in the stack is normalized to the average of 95% 
percentile of blood pool pixels in that frame. For each pixel, 
signal intensity change along 3rd dimension is fit into a linear 

Figure 3. Description of the proposed algorithm for DRA detection in myocardial segments (6-segment AHA model). The workflow is explained 

in 2 modules. (a) Generating the slope maps for each frame. Acquired undersampled k-space data with F frames are reconstructed to the fully sampled 

k-space data with GRAPPA. Each frame in full k-space is temporally windowed with 10 different windows with width equal to 65% of full k-space. 
The time difference T between two extreme windows is therefore 35% of total temporal window. Each new k-space is then reconstructed into image 

frames with partial Fourier reconstruction algorithm. One of these 2D+time reconstructions (highlighted with red contour) is input to the 3D CNN 

which outputs myocardial segmentations and RV insertion points [15]. RV insertion points are used to divide myocardium masks into 6 AHA segments. 

2D+time myocardium masks are multiplied with each realization to extract myocardium regions. After that, these 2D+time images are re-grouped such 

that each frame that is reconstructed with a different temporal window is stacked together (only an arbitrary kth frame is shown for simplicity). For each 

pixel, data points along the 3rd dimension are fitted into a linear line by also accounting for the time difference between each realization. These pixel-
wise slope values give the “slope map” for each frame. (b) Processing the slope maps. Slope maps from 2 neighboring frames are registered to the 

frame of interest, and these 3 slope maps are averaged. By using the prior information about which slice that frame belongs to, slope values with either 

plus or minus polarity are clipped. This clipping gives a clearer slope map by removing the blood pool/partial volume pixels. Finally, each myocardial 
segment is assigned a score depending on the slope values it contains, and classified as having or not having DRA.  
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line. By taking the slope value for each pixel after the linear 
fitting, pixel-wise slope map for that frame is generated. To 
account for different acquisition times, time interval for the 
data points is set to the time difference between left-most and 
right-most temporal windows, which can be found by 0.35 x 
TR x Nreadout. The purpose of finding the slope maps is to find 
out which pixels have a clear trend towards getting darker or 
brighter as temporal window is being shifted from one side of 
k-space to the other. Since the value of a normal non-DRA 
pixel is not expected to be affected by different temporal 
windows as remarkably as a motion-induced DRA pixel, 
large-amplitude slope values will be an indication of that 
particular pixel belonging to a DRA. Similarly, pixels that 
belong to normal tissue or a perfusion defect will have small 
or zero slope values. 

Since DRAs do not appear in one frame and completely 
disappear in the next frame, we can incorporate this temporal 
behavior of DRA to increase the robustness of the detection 
algorithm. To do this, we register the slope maps from 
neighbor frames into the slope map of the frame of interest, 
and take the average of the registered slope maps. The 
advantage of this step is that it preserves the DRA features that 
repeat in successive frames, and suppresses the noise-like high 
slope values that are not consistently observed in neighboring 
frames. 

One of the prior knowledge we can use to further clean the 
slope maps is based on the motion of the heart in different 
cardiac phases. As described in Data Acquisition section, 
typical FPP cMRI sequence acquires 3 slices. Slice 1 is 
acquired when the heart is primarily in the systole phase, 
where it contracts rapidly at the beginning of k-space and 
slows down towards end-systole. This means that the left-side 
of k-space captures more rapid motion and results in more 
severe DRA. As a result, DRA pixels in Slice 1 are expected 
to be darker when the temporal window is close to the left-side 
of k-space. Therefore, the slope values for DRA pixels should 
be positive as the reconstructed pixel value will be increasing 
from left to the right k-space.  Similarly, Slice 2 and 3 are 
acquired in diastole, where the heart relaxes and LV cavity 
expands during acquisition. Oppositely to Slice 1, the slope 

values for DRA pixels in Slice 2 and 3 will be negative. For 
this reason, slopes with a certain polarity can be clipped 
depending on which slice the frame of interest belongs to. The 
effect of clipping is shown in Fig. 4. A byproduct of this prior 
information about cardiac phases is the ability to 
remove/suppress DRA from the reconstructed images by using 
the k-space portion that captures less motion for that slice. This 
is demonstrated in more detail in the Results section.  

The final step is the processing of the final slope map to 
detect the myocardial segments with DRA. We classify a 
myocardial segment as having or not having a DRA depending 
on a  score calculated based on weighted average of number of 
“bright” pixels inside that segment. Very bright pixels that 
exceed a certain threshold are weighted by 4, moderately 
bright pixels that exceed a lower threshold are weighted by 1, 
and all pixels that are smaller than the lower threshold are 
weighted by 0. After calculating the score for each myocardial 
segment, segments that have a score higher than 11 are 
classified as having DRA. Otherwise, they are classified as not 
having DRA. These threshold values are determined 
experimentally.  

The proposed algorithm is applied to 15 volunteer studies 
as well as large animal studies (2 canines). For all of the 
volunteer and patient imaging studies, local Institutional 
Review Board (IRB) approval and written informed consent 
was obtained before each imaging exam/study. Imaging 
experiments in animals were done under a protocol approved 
by the local Institutional Animal Care and Usage Committee. 
Three slices from each human study and 1 slice from each 
canine study were used (47 slices in total).  

III. RESULTS 

A. DRA Reduction by Temporal Windowing 

 As described in the earlier sections, the severity of DRA 
depends on motion characteristics during the acquisition of k-
space. Since we have the prior knowledge about the cardiac 
phases in which each slice is acquired, we can estimate which 
portion of k-space might contribute to motion-induced DRA. 

Figure 5. Dynamic simulation for systolic phase. (a) For dynamic 
simulations using a numerical phantom, k-space is filled in 7 temporal 

steps. To simulate systole, LV diameter scaling (i.e., the ratio of LV 

cavity diameter to whole LV diameter) decreases linearly when filling 
the first 4 divisions as shown in panel (a). The last 3 divisions are 

filled assuming the LV diameter scaling remains the same as heart 

slows down towards the end of systole. Panel (b) is the conventional 
reconstruction where all of the acquired k-space is used (full temporal 

footprint). This results in a clear DRA along the phase-encode  

direction. Panel (c) shows the reconstruction by using a left-sided 
temporal window, which in this case includes the k-space portion 

during contraction. As can be seen, this results in a more severe  DRA. 

Finally, (d) shows the reconstruction by using a right-sided temporal 
window, which covers the k-space portion where the heart is mostly 

still. As a result, (d) has less motion-induced DRA.  

 
 

 

 
 

 

 

 

Figure 4. Description of a “clipping” procedure to remove blood 

pool/partial volume pixels. (a) An example FPP image frame with 

DRA in the septal wall. (b) Pixelwise slope map corresponding to 
changes in pixel values according to 10 reconstructions with a sliding 

window approach (Section II). Note that there are large-amplitude 

pixels near the septum with opposite polarities (c) Using the prior 
knowledge that we have about the behavior of motion-induced DRAs 

in different slices (Fig. 2), we can ignore the pixels with a certain 

polarity. This particular frame belongs to Slice 1 (Fig 2), and the prior 
knowledge we have suggests that pixels with DRA need to have 

positive slope for Slice 1. As can be seen from the composite image 

in (c), the clipping procedure gives a more precise slope map wherein 
the blood pool pixels with large negative slope are removed.  
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Since the systolic phase has a rapid contraction at the 
beginning of data acquisition, using the right side of k-space 
results in less DRA for Slice 1 (Fig. 2). For the diastole phase, 
heart is relaxing and using the left side of k-space results in 
less DRA for Slice 2 and Slice 3 (using the slice-indexing 
approach shown in Fig. 2).  

Fig. 5 shows the results of dynamic numerical simulations 
for the systolic phase. Fig. 5a explains the motion of the 
simulated heart during data acquisition: as the k-space lines are 
filled from left to right, the diameter of LV blood pool first 
linearly decreases, then remains constant, simulating a 
contracting heart in systole. Fig. 5b shows the conventional 
reconstruction which uses the full temporal window. As shown 
with red arrows, the reconstruction with full temporal window 
has subendocardial DRA along the phase-encode direction. 
Fig. 5c is the resulting image when only 65% of k-space data 
from the left-side of k-space is used for reconstruction. As the 
left-side captures most of the motion during systole, the 
reconstructed image has even more severe DRA as shown with 
red arrows. Finally, Fig. 5d shows the image when 65% of k-
space data from the right-side of k-space is used for 
reconstruction. As the numerical phantom is mostly still while 
the right-side of k-space is being filled, the resulting image has 
much less DRA.  

Our proposed DRA reduction procedure was tested in 
human and animal data. As an example case, Fig. 6 shows the 
reconstructed images from different slices for a healthy 

volunteer. Each slice is reconstructed with full k-space (first 
column), left-sided k-space (second column) and right-sided 
k-space (third column). The results are consistent with what is 
observed in numerical simulations: Slice 1 has reduced DRA 
when right side of k-space is used, and has more severe DRA 
when left side of k-space is used. Conversely, Slice 2 and 3 
have reduced DRA when left side of k-space is used, and have 
more severe DRA when right side of k-space is used. As 
another example for DRA reduction, Fig. 7 shows a frame 
from Slice 2 of a healthy volunteer. In this case example, 
DRAs can be globally observed throughout subendocardial 
border (shown with red arrows). The proposed method, 
however, reduces the severity of DRA to a great extent by 
using the optimal temporal window for that particular slice.  

B. Volunteer Studies   

Fig. 8 shows 3 representative cases for DRA detection. 
Case 1 is a healthy volunteer with DRAs in septal and inferior 
walls (shown with red arrows). Fig. 8a2 shows the 
corresponding pixel-wise “slope map” for Case 1. As can be 
seen, the regions with DRA have very high slope values 
indicated by yellow pixels. Fig. 8a3 shows the AHA segments 
with detected DRA after processing this slope map. The 
algorithm correctly classifies 4 myocardial segments with 
DRA. Case 2 corresponds to a patient with known distal LAD 
disease. The region shown with a green arrow is a true 
perfusion defect while the region shown with a red arrow is a 
DRA in the septal wall. In the corresponding slope map in Fig. 
8b2, the region with DRA has significantly higher slope values 
than the rest of myocardium. After processing this slope map, 
2 myocardial segments in the septal wall are correctly detected 
as having DRA. An important point to note here is that the 
myocardial sector which has a true perfusion defect has very 
low slope values as expected, and thus can easily be 
differentiated from DRA by our proposed algorithm. Finally, 
Case 3 is a patient with suspected heart failure with reduced 
ejection fraction. All the dark regions that are shown with 
green arrows in Fig. 8c1 are true perfusion defects and not 
DRA. As can be seen from the corresponding slope map (Fig. 
8c2), the slope values throughout myocardium are noticeably 
small. As a result, none of the segments are detected as having 
DRA (Fig. 8c3).  

C. Animal Studies    

Fig. 9 shows the results from one of the canine studies with 
epicardial stenosis resulting in a large perfusion defect. The 

Figure 6. Example results from a healthy volunteer to 

demonstrate the different DRA-inducing motion characteristics 

for Slice 1 vs Slice 2-3 (using the slice-indexing convention shown 

in Fig 2). Slice 1 is acquired in systole while Slice 2 and 3 are 

acquired in diastole. Consistent with the dynamic simulation, the part 
of k-space with minimal cardiac motion results in reduced DRA and 

vice versa. Namely, for Slice 1, using a left-sided temporal window 

results in worse DRA (a2) and a right-sided temporal window results 
in suppressed DRA (a3). For Slice 2 and 3, however, using a left-

sided temporal window results in suppressed DRA (b2,c2) and right-

sided window results in a worse/enhanced DRA (b3,c3). 

 

 
 

 

 
 

 

 

Figure 7. Representative frame for DRA reduction from a healthy 

volunteer. (a) Conventional reconstruction uses the full temporal 

window in k-space which results in motion-induced DRA throughout 
the subendocadial wall (red arrows). (b) Proposed approach for DRA 

reduction uses the temporally windowed k-space with less motion. As 

a result, DRAs are almost completely removed from the FPP image. 
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dark region shown with green arrow in Fig. 9a is the 
hypoperfused area and not DRA. The region shown with red 
arrow, however, is a DRA. As shown in the slope map in Fig. 
9b, the region with DRA has high slope values that are 
highlighted with yellow color. Other regions, on the other 
hand, do not have a noticeable batch of high-slope pixels. After 
the processing of this slope map, the septal myocardial 
segment with DRA can be correctly detected, as shown in Fig. 
9c.  

D. Detection Performance of the Proposed Algorithm  

The artifact detection performance of the proposed method 
was assessed in the context of maximized specificity for 
detection of DRAs (i.e., to ensure no true perfusion defects are 
categorized as DRA). This setting is appropriate in clinical 
studies wherein the goal is to detect severe stress-induced 
perfusion deficits corresponding to obstructive coronary artery 
disease. In the examined set of FPP studies, we had a total of 
47 myocardial slices. Optimizing the detection threshold for a 
specificity of 100% resulted in a sensitivity of 81% for per-
slice DRA detection.  

IV. DISCUSSION 

In this work, we proposed a new algorithm to detect 
motion-induced subendocardial DRA in first-pass perfusion 
cMRI images acquired with routine clinical protocols and 
Cartesian k-space sampling. Our algorithm takes advantage of 
deep-learning-based myocardial segmentation and 
automatically examines if a specific myocardial segment is 
likely to have DRA on the basis of the pixel-level signal 
intensity behavior when different temporal windows are used 
for image reconstruction. Experiments performed on patient 
volunteers (n=15) and canines (n=2) showed that our 
algorithm achieves per-slice performance of 81% sensitivity 
and 100% specificity for detection of subendocardial DRA.  

The threshold values used in this work can be tuned 
experimentally so that an ideal specificity of 100% is achieved 
at the cost of reduced sensitivity. This approach for 
determining the detection threshold may be appropriate in the 
context of aiming to diagnose obstructive coronary artery 
disease which corresponds to severe stress-induced perfusion 
defects. In this setting, incorrectly classifying a segment which 
includes a true perfusion defect as DRA can result in 
underestimation of the severity of disease (ischemic burden), 
which can justify the need for having a 100% specific 
algorithm for DRA detection. It is important to note that, in a 
more general setting—e.g., if the diagnostic goal is different 
from obstructive coronary artery disease—a different 
threshold may be optimal.  

An interesting byproduct of the proposed method is 
generating a series of alternative image reconstructions with 
truncated k-space (one-sided partial Fourier k-space coverage) 
from the same k-space data, some of which may have reduced 
DRA compared to the original reconstruction which uses the 
entire acquired k-space.  As shown in Fig. 6, it is typically the 
case that a specific choice among the reconstructions with 
retrospectively-reduced temporal footprint (reconstructed 
using partial Fourier and parallel-imaging acceleration) has 
significantly suppressed subendocardial DRA—both in terms 
of extent and severity. This is simply due to the fact that by 
eliminating parts of the k-space with rapid motion, we are 
“shaping” the PSF induced by the cardiac motion effects to 
have a more ideal form. Although DRA reduction is not the 
main goal of this work, it can help increase the performance of 
quantitative/semi-quantitative methods used for analysis of 

Figure 8. Representative results from volunteer studies. (a1) Case 1 
shows a perfusion image frame from a healthy volunteer with DRA in 

septal and inferior wall of the heart (red arrows). As can be seen in (a2), 

the regions with DRA are highlighted by the algorithm in the slope map. 
(a3) shows detected myocardial segments after processing the slope map. 

(b1) Case 2 belongs to a patient with known distal LAD disease. The 

region in the septal wall is DRA (red arrow), and the region in anterior 
wall is a true perfusion defect (green arrow). (b2) shows the 

corresponding slope map. Note that only the septal wall with DRA has 

large slope values. (b3) shows the detected myocardial segments with 

DRA. (c1) Finally, Case 3 is a patient with suspected heart failure with 

reduced ejection fraction, and all the dark regions in myocardium are true 

perfusion defects (green arrows). (c2) shows the resulting slope map for 
Case 3. Unlike other cases with DRA, pixels have very small slope 

values. (c3) As there is not a sufficient number of  large slope values in 

any myocardial segments, our algorithm (correctly) does not detect any 
segments as having DRA in this case. 

 

 

 

 

 
 

 

 

 

Figure 9. Representative stress first-pass perfusion time frame 

(peak myocardial enhancement) from animal studies (canines 

with epicardial stenosis). (a)  An example frame that shows DRA 

(red arrow) and hypoperfused region (green arrow). (b) As can be 

seen from the slope map, the only region with very high slope values 
is the region with DRA. (c) Finally, the slope map can be processed 

to detect the myocardial segment with DRA.  
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FPP cMRI datasets. Further work needs to be done in this area 
in future efforts.   

A key feature of our proposed algorithm is that it can be 
applied to individual time frames in the FPP image series. This 
enables the end-user to evaluate which specific time frames are 
suspected of having DRA. Nevertheless, the detection 
performance of our algorithm improves if it is jointly applied 
across multiple frames. This is because DRA typically exhibits 
temporal correlations, e.g., if it is present in a specific 
myocardial segment and a specific time frame, it often persists 
in that myocardial segment for at least another 1 or 2 time 
frames, i.e., does not disappear immediately in the image 
series. A technical feature of our algorithm is that it does not 
need image-intensity normalization using so-called “proton 
density” images. Before finding the corresponding slope map, 
stacked frames from different realizations are normalized to 
the LV blood pool. This self-normalization process eliminates 
the need for a separate set of proton-density image, which not 
be available.  

 An important aspect that increases the robustness of our 
method is that it does not require an accurate myocardial 
segmentation. As described in Fig. 4, our method can eliminate 
the blood pixels/partial volume effects based on the prior 
information about the polarity of slope values for pixels with 
DRA. The polarity of DRA pixels is determined based on 
which cardiac cycle that particular slice is acquired in. After 
the clipping operation, pixels with DRA in the myocardium 
can be more precisely distinguished from the left ventricular 
blood pool.  

A. Limitations  

A limitation of this work is the need to determine a 

threshold value that can be applied to the slope maps for 

detection of DRA in each myocardial slice or segment. A 

specific threshold value will not be optimal for all clinical 

settings and may depend on the pulse sequence parameters. 

Therefore, the thresholds likely need to be adjusted depending 

on the clinical application and the specific pulse sequence 

used in the imaging protocol. Another limitation is that in 

data-acquisition protocols (pulse sequences) where spatial 

resolution is reduced to have a small temporal footprint (e.g., 

below 75 msec), the left-sided and right-sided k-space 

windows may not show sufficient distinction in the behavior 

of DRA. In such settings, the contribution of Gibbs ringing to 

the total DRA may become greater than the contribution of 

motion. In such cases, the proposed algorithm may have a 

lower sensitivity for detecting the regions with DRA.  

B. Conclusions  

To the best of our knowledge, our work is the first approach 

for performing automatic detection of the subendocardial 

dark-rim artifact in first-pass perfusion cMRI without the 

need for quantification of myocardial blood flow. 

Furthermore, our approach is the first to leverage the power 

of CNNs to automate the process of dark-rim artifact 

detection and suppression in perfusion cMRI. Future works 

include further evaluation of the performance by applying the 

technique in a wider patient population, and investigating the 

impact of image-artifact reduction in quantitative FPP cMRI. 
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