
  

 

Abstract— The ability to detect surgical site infections (SSI) 

is a critical need for healthcare worldwide, but is especially 

important in low-income countries, where there is limited 

access to health facilities and trained clinical staff. In this 

paper, we present a new method of predicting SSI using a 

thermal image collected with a smart phone. Machine learning 

algorithms were developed using images collected as part of a 

clinical study that included 530 women in rural Rwanda who 

underwent cesarean section surgery. Thermal images were 

collected approximately 10 days after surgery, in conjunction 

with an examination by a trained doctor to determine the status 

of the wound (infected or not).  Of the 530 women, 30 were 

found to have infected wounds. The data were used to develop 

two Convolutional Neural Net (CNN) models, with special care 

taken to avoid overfitting and address the problem of class 

imbalance in binary classification. The first model, a 6-layer 

naïve CNN model, demonstrated a median accuracy of 

AUC=0.84 with sensitivity=71% and specificity=87%. The 

transfer learning CNN model demonstrated a median accuracy 

of AUC=0.90 with sensitivity =95% and specificity=84%. To 

our knowledge, this is the first successful demonstration of a 

machine learning algorithm to predict surgical infection using 

thermal images alone.  

Clinical Relevance— This work establishes a promising new 

method for automated detection of surgical site infection. 

 

I. INTRODUCTION AND MOTIVATION  

A. The Burden and Challenge of Surgical Site Infections 

Infections are a critical health concern, which can lead to 

sepsis, organ failure, or even death. The infection of surgical 

wounds, also known as surgical site infection (SSI), occurs 

worldwide. In higher-income countries such as the United 

States, such infections are responsible for costly readmissions 

and continued treatment of the patient, accounting for 21.8% 

of hospital infections and 0.6% of all hospital deaths [1]. In 

the US, infections occur in approximately 3.5% of all patients 

undergoing surgical procedures [2].  

However, the rate of surgical site infection (SSI) is 

considerably higher in low-income countries, exacerbated by 

challenges of shortage of trained clinical staff, 

underdeveloped healthcare infrastructure, and anti-microbial 

resistance. In Rwanda, which is the site of this study, 11% of 

women who have Cesarean section births developed an 

infection [3].   
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B. Development of Tools for Detecting Infection 

Until recently, the detection of infection has been the 
responsibility of trained clinical staff, such as doctors and 
nurses in hospitals. These methods generally rely on 
subjective indicators including heat, erythema (redness), 
swelling, and pain. In recent decades, these methods have 
been improved with better clinical guidelines [4] and 
quantitative approaches, such as the ASEPSIS score [5], 
which takes into account the fluid discharge, color, odor, and 
separation of the wound tissues. While ASEPSIS provides a 
useful framework with which to assess possible infection, 
this method requires clinical experience which can be 
challenging to access in low-resource areas. 

 The need for better outpatient services has motivated 
interest in creating new electronic tools to help surgery 
patients take care of their wounds and monitor the healing 
process at home. This technology is also of interest to non-
surgical patients who have chronic wounds or ulcers, which 
can result from vascular disease, diabetes, and numerous 
other health conditions [6].  

With the growing prevalence of smart phones, mobile 
applications, such as Tissue Analytics and the Mobile Post-
Operative Wound Evaluator (mPOWER), have been 
developed to help measure and monitor wounds using a 
mobile phone image of the wound.  However, none of these 
tools claim to detect infection [7, 8]. 

Most recently, machine learning methods have been 
developed by our group and others to attempt prediction of 
infection using a color mobile phone image of the wound [9, 

 

Fig. 1. Health worker standing over surgery patient using a 

thermal camera module and smart phone to capture an image of 

the surgical wound.  The paper frame target is used for alignment 

and creating a bounding box for automated cropping of image. 
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10], which could be of great value to both community health 
workers in low resource areas as well as outpatients in 
wealthier communities around the world. 

C. Racial Bias and Generalizability 

With emerging use of artificial intelligence and machine 
learning in medicine, a growing concern within the health 
research community are the issues of fairness and bias in 
these algorithms [11]. While the use of mobile phone color 
images is a promising and useful approach, it is also quite 
likely that an infection prediction algorithm that depends on 
color may not work well among racially diverse patient 
populations having a range of skin colors. For this reason, we 
present in this paper a new method of predicting surgical site 
infection making use of thermal imaging alone, which is not 
impacted by the color of the patient’s skin.  

II. CLINICAL STUDY 

A. Study Design 

     For algorithm development, image data was collected as 
part of a study led by Harvard Medical School and Partners 
in Health, in Kigali, Rwanda. In this study, all women who 
underwent cesarean section at Kirehe District Hospital 
between September 2019 through February 2020 were 
prospectively enrolled on postoperative day 1 (POD1). On 
POD11 (+/- 3 days), patients returned to the hospital for 
follow-up; a general practitioner then performed a physical 
exam and inspection of the wound to determine whether or 
not the patient had a surgical site infection (SSI).  Both 
visible (RGB) and thermal images were collected in our 
study; however for this paper, we focus on the thermal 
images, which included 530 women, yielding images of 30 
infected wounds and 500 non-infected wounds. 
     Our clinical study was approved by the Institutional 
Review Boards (IRBs) of Harvard Medical School, MIT and 
Kirehe district hospital. 

B. Thermal Image Data Collection and Labelling 

     Images were captured using a Samsung Galaxy J8 smart 
phone and a low-cost (US$200) thermal camera module 
(SEEK Thermal Compact). The thermal camera connects to 
the mobile phone and is also electrically powered from the 
mobile phone. We developed a custom Android application 
using the Android SDK for the SEEK Thermal camera to 
enable the collection of a JPG thermal image of the wound, 
as well as a separate 2D temperature array. The JPG thermal 
image is used for real-time image feedback to the user. 
However, since the dynamic range of each image pixel is 
limited to only 8-bits, we used the 2D temperature array to 

create a thermal pseudo-image having 0.1 C temperature 
precision per pixel, which translates to roughly 10-bits of 
precision. 
     To avoid the need to manually edit the photographs in the 
data processing stage, we designed a custom mobile app, 
called WoundScreener, with the Vuforia augmented reality 
library and computer vision software that automatically 
aligned, rectified, and cropped the image at the time of data 
collection. As shown in Figure 1, a thick paper frame with a 
printed “target” pattern and color chart was placed over the 
surgical wound which enabled the computer vision software 
to automatically track the image in 3D and correct for 
parallax distortion. For the thermal camera image, a strip of 

copper tape served as an optical marker that was used to 
align the image. Sample visible and thermal images, 
captured on the same woman, are shown in Figure 2. 
     For the purpose of this short paper, we focus on the 
algorithm development using the thermal imaging data. 

C. Data Labelling and Preprocessing 

     As mentioned above, the SSI diagnosis was performed by 
the doctor, and this assessment was used to label all the data 
for the purpose of conducting supervised machine learning. 

Starting with the raw thermal image of 206x156 pixels, 
we then applied a custom computer vision script, with a 
bounding box algorithm and polygon model to automatically 
find the outline of each wound frame and crop the remainder 
of the image.  The resulting wound thermal images were 
standardized to 160x100 pixels (width x height). 

In order to reduce overfitting and improve 
generalizability, we also added a random image rotation, 
image flip, and batch normalization as a pre-processing step 
for our CNN model testing and optimization. 

III. NAÏVE CNN MODEL 

A. Algorithm Design and Implementation 

As our initial model, we developed a few-layer naïve 
convolutional neural net (CNN) model. For development, we 
used the Keras Tensorflow library to compile and train the 
CNN models in Python. The architecture consisted of 3 
convolutional layers with ReLU activation layers added 
between the convolutional layers, followed by a pooling 
layer. For reducing overfitting, and improve generalization, 
we also used a node dropout rate of 0.5, with a final fully-
connected binary layer with sigmoid activation—giving us 
the labels “0” for non-infected or “1” for infected wound 
images. 

 
Fig. 2. Sample images taken of the same wound: a) standard 

RGB phone camera image and b) thermal camera image. 
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B. Addressing Class Imbalance 

Given the relatively low proportion (1:9) of infected 
images, it was necessary to implement methods to address 
the significant class imbalance. Without addressing this 
issue, the standard machine learning optimization would 
tend to produce a model that would trivially predict all 
images as non-infected, which would yield a fairly high 
classification accuracy, but would result in a very low 
sensitivity (true positive rate).  

The methods we explored are described below:  

Creating a custom cost/loss function: We first created a 
custom loss function for optimization, which increased the 
cost of false negative classification. This custom loss 
function was effective in increasing the number of true 
positives.  However, the custom loss function negatively 
impacted the rate of convergence and significantly increased 
the time to train the model, so the following two methods 
were adopted instead. 

Data Synthesis: A second method we explored to address 
class imbalance was to expand the minority class and reduce 
class imbalance. Although we found this method to be very 
effective at increasing our true positive rate, we limited the 
maximum amount of data synthesis to 2X, which is 
generally recommended to avoid overfitting.  

Class Weights: A further method of compensating for class 
imbalance was adjustment of the class weight inside the 
model. We used the Keras library to adjust the weights and 
explored a range of weight ratios ranging from 5 to 15.  

C. Model Training 

     For model training, three separate optimization 
algorithms were evaluated (Stochastic Gradient Descent 
(SGD), Adam, and RMSprop) using a range of training 
epochs, from 30 and 50, which was sufficient to achieve 
convergence. 
     As part of our parameter optimization, several hundred 
different combinations of weights, optimizer functions, and 
training epochs were evaluated. For each combination of 
parameters, we trained a separate model using k-fold cross 
validation.  For this task, we split our input data into sizes 
1/k and (k-1)/k for validation and training sets, respectively. 
We explored both k = 5 splits and 10 splits, which 
corresponds to13 and 6 infected images, respectively. As 
expected, the 5-fold validation model did a better job of 
generalizing to more data and producing smoother ROC 
curves, with less overfitting than the 10–split validation 
model. 

D. Model Optimization and Prediction Results 

     For each model created in the parameter search, a ROC 
curve was generated as well as the standard metrics of Area 
Under the Curve (AUC), sensitivity and specificity. We also 
calculated the Matthews correlation coefficient (MCC), 
which is a preferred metric for binary classification that 
tracks false negatives as well as false positives.  
     Since the optimization of our model depends on the 
chosen objective of our project, it is important to state that 
our objective was to create a screening tool for surgical site 
infection. As a general criteria for screening tools, we placed 
higher importance on sensitivity rather than specificity, and 
rejected any model with sensitivity<0.7. In the context of 

global health, this implies that our model would detect as 
many infections as possible, at the expense of allowing more 
false positives. 

Using these criteria, we selected the best performing 
model, which is shown in Figure 4, including the ROC curve 
for all five folds, with median AUC=0.84, sensitivity=0.71, 
specificity = 0.87, and MCC = 0.37, as summarized in Table 
1. The optimal class weight ratio was 15:1 with the Adam 
optimizer function.  

IV. TRANSFER LEARNING MODEL 

A. Algorithm Design and Implementation 

Our next approach was to create a CNN model using 
transfer learning, which makes use of a pre-trained, highly 
sensitive neural network commonly used for image 
classification. For this task, we used the ResNet50 model, 
which has a fairly complex architecture (Fig 3), with many 
convolutions and transformations. Since the input to the 
transfer learning model required a specific size image, we 
implemented preprocessing to scale the image pixel size to 
224 x 224, which also helped to reduce the training time.  

As the final layer, we added a dense layer to classify the 
output images into two classes, with a sigmoid activation. To 
reduce overfitting, a node dropout rate of 20% was also used. 
As in the previous naïve CNN model, a randomized flip, 
random rotation, and batch normalization, was also used in 
the image pre-processing step.  

B. Class Imbalance and Model Training  

For this transfer learning model, we addressed the class 
imbalance using the same methods as described previously. 
For model training, we again used 5-fold cross validation, 
and once again did a broad parameter search, with several 
hundred parameter combinations, varying the class weights, 
optimizer function and number of epochs. 

C.  Prediction Results from Transfer Learning 

     The resulting best transfer learning model is shown in 
Figure 5, in terms of the ROC curve for all 5 folds, with 
mean AUC = 0.90, sensitivity=0.95, specificity = 0.84, and 
MCC=0.44. the optimal class weight ratio was 15:1, with the 
RMS-Prop optimizer function. 

 

 
 

Fig. 3. The architecture of the ResNet50 neural net. Notice 

the many convolutions and fully-connected layers. 
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V. DISCUSSION 

Both the naïve CNN and transfer learning CNN produced 
reasonably good results for the prediction of infection. We 
have taken care to use conservative methods to minimize 
overfitting and to address the issue of class imbalance.  
However, additional testing is needed using a larger dataset 
in order to verify these results.  

Additional work is also being done to visualize the 
activation layers of the CNN model in order to explore what 
parts of the wound contribute the most to the infection 
prediction. Based on our preliminary analysis, it seems that 
the image pixels near the wound incision have a large 
influence on the prediction; this is consistent with our 
knowledge that SSI’s most commonly begin at the site of the 
incision, where bacteria have been introduced to the tissue. 
Since we know that the progression of the infection and the 
severity of infection can depend on the specific type of 
bacteria that caused the infection, other variables are being 
examined as well. 

VI. CONCLUSION 

 Based on our results from 530 surgical C-section wounds 
(30 infected), we have successfully developed two different 
deep learning models to predict surgical site infection. To 
the best of our knowledge, this is the first reported 
successful demonstration of using a machine learning 
algorithm to perform a prediction of SSI using thermal 
images alone. While these results are very encouraging, it is 
prudent to verify these results with additional data. 

Nevertheless, the availability of low-cost (US$200) 
thermal imaging camera modules for smart phones, now 
provide a new opportunity to help identify wound infection 
without a dependence on skin color or racial differences. 
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Fig. 4. Representative folds for naïve CNN infection model 

with a median AUC= 0.84. 

 
Fig.5. Representative folds for transfer learning CNN model 

with a median AUC= 0.90. 

Model Max. 

Accuracy 
Sensitivity Specificity Median AUC 

(IQR) 

Naïve 

CNN 

0.86 0.71 0.87 0.844 

(0.34) 

Transfer 

Learning 
CNN 

0.94 0.84 0.95 0.900 

(0.19) 

TABLE I. 
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