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Abstract— The automatic arrhythmia classification system
has made a significant contribution to reducing the mor-
tality rate of cardiovascular diseases. Although the current
deep-learning-based models have achieved ideal effects in ar-
rhythmia classification, their performance still needs to be
further improved due to the small scale of the dataset. In
this paper, we propose a novel self-supervised pre-training
method called Segment Origin Prediction (SOP) to improve
the model’s arrhythmia classification performance. We design
a data reorganization module, which allows the model to learn
ECG features by predicting whether two segments are from
the same original signal without using annotations. Further, by
adding a feed-forward layer to the pre-training stage, the model
can achieve better performance when using labeled data for
arrhythmia classification in the downstream stage. We apply
the proposed SOP method to six representative models and
evaluate the performances on the PhysioNet Challenge 2017
dataset. After using the SOP pre-training method, all baseline
models gain significant improvement. The experimental results
verify the effectiveness of the proposed SOP method.

I. INTRODUCTION

Arrhythmia can cause irregular rhythms and increase the
risk of stroke and sudden cardiac death. With the popu-
larization of single-lead devices such as AliveCor, the use
of electrocardiogram (ECG) to diagnose arrhythmia can
effectively reduce its mortality.

Due to the powerful feature learning capabilities of DNNs,
some classical networks such as CNNs and RNNs have
been designed to detect and classify arrhythmia. The CNN
based model [1] obtained the best score in the PhysioNet
Challenge 2017 competition [2]. Variant structures of ResNet
[3][4] and structures of SE-block [5][6][7] are current trend
in the field of arrhythmia classification. In addition, there
are also variant structures of DenseNet [8][9], long short-
term memory (LSTM) [10], and Convolutional Recurrent
Neural Network (CRNN) [11] that achieved ideal results in
the classification of arrhythmia.

Although the above-mentioned deep learning methods
have made remarkable progress, the way to design a complex
network structure to improve classification performance has
encountered a bottleneck. At present, accurately labeled ECG
datasets are generally small in scale (for example, the MIT-
BIH Arrhythmia Database [12] consists of 47 subjects),
causing these data-driven models to encounter overfitting
problems in arrhythmia classification. As an effective method
to improve the model’s classification performance, self-
supervised learning can alleviate the model overfitting prob-
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lem by obtaining a suitable initialization weight in the pre-
training stage.

Pioneered studies of self-supervised learning methods
based on ECG data have shown the potential to improve
model performances. Sarkar et al. [13] pioneered the ef-
fectiveness of self-supervised learning in the field of ECG-
based emotion recognition. Cheng et al. [14] explored the
effect of self-supervised learning in the classification of
arrhythmia and proved that promoting subject invariance can
improve classification performance. CLOCS [15] achieves
strong generalization performance by designing patient-level
self-supervised learning tasks with only a few labels. In gen-
eral, both [14] and [15] prove the effectiveness of designing
patient-level self-supervised learning tasks for arrhythmia
classification.

In this paper, we propose a self-supervised method for
arrhythmia classification named SOP, which stands for
Segment Origin Prediction. The SOP method allows the
model to obtain a suitable initialization weight in the pre-
training stage, thereby improving the classification effect
of arrhythmia in the downstream stage. We design a data
reorganization module, which allows the model to learn ECG
features by predicting whether two segments are from the
same original signal without using annotations. Further, by
adding a feed-forward layer to the pre-training stage, the
model can achieve better performance when using labeled
data for arrhythmia classification in the downstream stage.
We apply the proposed SOP method to six representative
models and evaluate the performances on the PhysioNet
Challenge 2017 dataset [2]. After using the SOP pre-training
method, all baseline models gain significant improvement.
In particular, some of the models achieve competitive per-
formances compared with state-of-the-arts. We also find that
the classification performance will be further improved if
external data is introduced.

II. METHOD

As shown in Fig. 1, the proposed SOP method’s overall
framework consists of two parts: the pre-training stage and
the downstream stage. Since self-supervised learning can
obtain prior information without using annotations, the only
input accepted in the pre-training stage is just data without
labels. Similar to the self-supervised learning process in
biological signals [16][14], the pre-training stage will treat
the ECG signal as unlabeled data and fine-tune with data and
labels in the downstream stage. In the pre-training stage, the
unlabeled data will first pass through the data reorganization
module to automatically generate labels and transform them
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Fig. 1. The framework of the proposed SOP method.

into brand new labeled data xs. And then xs will be sent
into the DNN model for training. We added an extra feed-
forward layer to the model at this stage to enhance the
model’s characterization ability. The model weights obtained
in the pre-training stage will be saved. In the downstream
arrhythmia classification stage, the model will load the
previously saved weights as the model’s initialization and be
fine-tuned on labeled data. We will explain some essential
parts below.

A. Data Reorganization Module

According to the self-supervised learning process, unla-
beled data needs to be reorganized to obtain automatically
generated labels. Fig. 2 shows how our data reorganization
module works.

• Data: First, we cut all the raw ECG signals into small
segments with the same length. After that, for any
segment A obtained after cutting, another segment B
is randomly selected from the remaining segment set.
A and B are concatenated into a brand-new segment C
with some zeros padded in the middle.

• Label: We will generate a set of binary labels according
to the way to generate segment C. If the two segments
(A and B) in C are from the same original ECG signal,
then the label of C is 1; otherwise, the label of C is 0.

After the data reorganization module, the unlabeled ECG
signal will be converted into binary labeled data xs so that
the model can learn prior information through supervised
learning.

B. Feed-forward Layer

Inspired by simCLR [17], a feed-forward layer composed
of a fully connected layer and Relu activation is added to
the model at the pre-training stage. The feed-forward layer
can integrate the previously highly abstracted features after
multiple convolutions and enhance the model’s nonlinearity
and learning ability. As shown in Fig. 1, the signal hs will
be converted into zs, after the feed-forward layer (shown in
Eq.1 where σ is a ReLU activation function).

Fig. 2. Data reorganization module

zs = g(hs) = σ (Whs) (1)

C. DNN Models

SOP method is model independent, so the DNN model
in Fig. 1 can be replaced with any network. In order to
verify the generality of SOP, we test six widely used and
state-of-the-art models [18][19][11][20][5][1] in arrhythmia
classification. Among them, [11] won first place in the CPSC
2018 competition [21]; All of the top five algorithms in
the China ECG AI Contest 2019 competition [22] are all
designed on the basis of [19][18]. [1] is currently widely
recognized as the state-of-the-art model for the PhysioNet
Challenge 2017 [2]; SE-block [20] with a large kernel size
model [5] achieved second place in the PhysioNet 2020
competition [23].

D. Downstream Stage Framework

The task of the downstream stage is the arrhythmia clas-
sification problem that we actually need to solve.

The labeled data related to arrhythmia classification will
pass through the data preprocessing module to obtain xi as
shown in Fig. 1. Unlike the data reorganization module, the
data preprocessing module in the downstream stage has only
denoising and random cropping processes.

The DNN model structure in the downstream stage will
be consistent with the model we need to test, so there
is no extra feed-forward layer. Besides, the output classes
of the classifier will correspond to the actual number of
classifications of arrhythmia.

After the model is built, the model weights obtained in the
pre-training stage will be loaded as initial weights. A good
model initialization can prevent the model from falling into
a local saddle point during training, thereby improving the
final classification effect. After the initial weight is obtained,
the model will be fine-tuned on this basic.

III. EXPERIMENT

Here we lay out the protocol for our empirical studies to
understand different design choices in our framework.
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A. Database

The downstream dataset is what we actually need to
classify arrhythmia on it.

The PhysioNet/CinC Challenge 2017 [2] published dataset
is a large-scale, long-term single-lead arrhythmia classifica-
tion dataset. Some arrhythmia researches [6][4][1][10] have
been verified on it, which is very authoritative. It consists of
8528 recordings of single-lead ECG data, lasting between 9
s and 61 s. PhysioNet Challenge 2017 [2] are labeled with
four classes: (1) normal sinus rhythm (N for short, 5076
records), (2) AF (A for short, 758 records), (3) alternative
rhythm (O for short, 2415 records), and (4) noisy recordings
(P for short, 279 records).

To evaluate algorithms’ performance on the downstream
stage, we fully follow the requirements of the competition
organizing committee [2] and used F1 score to reflect the
overall index. The final F1 is defined as:

F1 =
F1N +F1A+F1O

3
(2)

The SOP pre-training stage dataset is not required to be
consistent with the downstream stage’s dataset, which means
that we can introduce external data through the SOP method.
The China Physiological Signal Challenge 2018 database
[21] (including its hidden dataset provided by [23]) is a
large open-source arrhythmia dataset released by the Seventh
International Conference on Biomedical Engineering and
Biotechnology. This dataset is currently the long-term (from
6 s to 60 s) and the authoritative largest dataset in the field of
arrhythmia classification. CPSC 2018 dataset [21] consists of
10,330 12-lead ECG recordings. Each recording was sampled
at 500 Hz.

B. Experiment Implementation Details

We conducted three sets of experiments: using the
PhysioNet Challenge 2017 dataset [2] in the pre-training
and downstream stage to explore the effects of the SOP
method (PhysioNet2017 experiment), exploring the ef-
fect of combining external dataset to pre-training dataset
(CPSC2018+PhysioNet2017 experiment), and exploring the
effect of adding a feed-forward layer (feed-forward layer
effection experiment).

PhysioNet2017 experiment is to verify whether the pro-
posed SOP method can improve the model’s classification
performance. The pre-training and downstream datasets in
this experiment are both PhysioNet Challenge 2017 [2]. For
each ECG sample, we use the Discrete Wavelet Transform
algorithm [24] to denoise. At the pre-training stage, all
data has been removed from the label to simulate unlabeled
signals. For the actual downstream arrhythmia classification
task, except Hannun’s model [1] was cut into 256 lengths as
article’s requirements, each signal was randomly cropped to
9000 lengths. We train at batch size 32 for 100 epochs at the
downstream stage.

CPSC2018+PhysioNet2017 experiment. The pre-training
stage dataset can be different from the downstream stage,
which means that we can introduce external data through

TABLE I
THE F1 SCORE OF EACH ARRHYTHMIA CLASSIFICATION MODEL ON THE

PHYSIONET CHALLENGE 2017 DATABASE AFTER USING THE SOP
PRE-TRAINING METHOD

Models
Random

init

After SOP method

PhysioNet2017 CPSC2018 + PhysioNet2017

Huang et al.[18] 0.766 0.785 0.796

He et al.[19] 0.808 0.830 0.837

Chen et al.[11] 0.820 0.829 0.836

Hu et al.[20] 0.833 0.848 0.854

Zhao et al.[5] 0.849 0.856 0.861

Hannun et al.[1] 0.852 0.863 0.875

the proposed SOP method. Inspired by [17][25][15], the
introduction of large-scale external data in the pre-training
stage can further improve the final classification performance
of the model. To verify this conjecture, this experiment
uses the combination of CPSC 2018 [21] and PhysioNet
Challenge 2017 [2] as the unlabeled pre-training dataset
(CPSC 2018 dataset [21] is used to simulate the imported
external data). The CPSC 2018 dataset [21] only keeps the
data from the first lead, and the frequency is also reduced
from 500hz to 300hz to consistent with the downstream
dataset. Except for the dataset, all settings are the same as
in the first experiment.

Feed-forward layer effection experiment is to verify
the benefits of the extra feed-forward layer. This experiment
will compare the downstream classification performance of
whether there is a feed-forward layer in the pre-training
stage. The pre-training and downstream datasets are both
PhysioNet Challenge 2017 [2]

IV. RESULT

We show the performance on the experiment with the
PhysioNet Challenge 2017 database [2] as the downstream
dataset and the comparison results with several widely used
models [18][19][11][20][5][1] in Table. I. The second col-
umn (Random init) shows the basic performance of models
without using SOP method.

The results of PhysioNet2017 experiment show that all
baseline models gain significant improvement by the SOP
method. The F1 score of [1][20][5] methods exceeded or
approached the 0.85 level. This experiment result demon-
strates that the proposed SOP method can improve the
model’s classification performance by obtaining a suitable
initialization weight that contains prior information of the
ECG signal.

The CPSC2018+PhysioNet2017 experiment results show
that the six models’ classification performance has been fur-
ther improved. Specifically, after using the SOP method, the
F1 score of the previous state-of-the-art model [1] increased
to 0.875. This experiment result demonstrates the introduc-
tion of external data can further improve the performance of
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TABLE II
THE FEED-FORWARD LAYER’S EFFECT OF ARRHYTHMIA

CLASSIFICATION AT PHYSIONET CHALLENGE 2017 DATASET

Models Without feed-forward layer With feed-forward layer

Huang et al.[18] 0.760 0.785

He et al.[19] 0.821 0.830

Chen et al.[11] 0.826 0.829

Hu et al.[20] 0.836 0.848

Zhao et al.[5] 0.852 0.856

Hannun et al.[1] 0.857 0.863

the model. It is worth noting that this experiment only uses
the CPSC 2018 dataset [21] as an example of external data
to obtain performance improvements. It is foreseeable that
if more external data is used, performance may be further
improved.

The results shown in Table. II prove the effectiveness of
adding the feed-forward layer in the pre-training stage for
downstream ECG arrhythmia classification tasks. After re-
moving the feed-forward layer, the final classification effects
of models will decrease.

V. CONCLUSIONS

In this paper, we propose a self-supervised pre-training
method named SOP to enhance the ECG arrhythmia classifi-
cation performance. The use of the data reorganization mod-
ule and feed-forward layer allows the model to obtain prior
information and suitable initialization weights in the pre-
training stage, thereby improving model performance in the
downstream stage. We also found that adding external data to
the pre-training dataset can further improve the model’s final
classification effect. Without using additional annotations, all
six widely used models have been improved. In particular,
based on the original excellent performance model, we have
achieved a 0.852 to 0.875 F1 score improvement, achieving
state-of-the-art results on the PhysioNet Challenge 2017
database [2].

In theory, our SOP method can be used not only for single-
lead arrhythmia diagnosis but also for diagnosing diseases of
other multi-lead ECGs, which will have potential practical
value in the future.
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