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Abstract— Multi-modal retinal image registration between
2D Ultra-Widefield (UWF) and narrow-angle (NA) images has
not been well-studied, since most existing methods mainly focus
on NA image alignment. The stereographic projection model
used in UWF imaging causes strong distortions in peripheral
areas, which leads to inferior alignment quality. We propose
a distortion correction method that remaps the UWF images
based on estimated camera view points of NA images. In
addition, we set up a CNN-based registration pipeline for UWF
and NA images, which consists of the distortion correction
method and three networks for vessel segmentation, feature
detection and matching, and outlier rejection. Experimental
results on our collected dataset shows the effectiveness of the
proposed pipeline and the distortion correction method.

I. INTRODUCTION

Multi-modal retinal registration aligns fundus images of
a same eye which are captured by different instruments, in
order to provide a complete view of pathologies for ophthal-
mological diagnosis. In recent years, Ultra-Widefield (UWF)
imaging becomes a popular option for retinal imaging, due
to its larger field of view than conventional narrow-angle
(NA) images. Therefore, UWF images can provide a more
comprehensive view of retina and help with diagnosis and
early screening of a variety of diseases [1]. In this paper,
we investigate the multi-modal registration task between 2D
UWF and NA images.

There have been extensive works on multi-modal retinal
registration. Some approaches proposed complete registra-
tion pipelines [2], [3] consisting of steps for feature detection,
description, and outlier rejection, while others improved
only the feature detectors [4], descriptors [5], [6] or outlier
rejection modules [7] in existing pipelines. Recently, multiple
Convolutional Neural Networks (CNN) approaches have
been proposed. Some works [8], [9] replaced certain modules
in conventional pipelines with CNN, and other approaches
[10]–[12] set up fully-CNN-based pipelines for this task.
Nevertheless, none of the existing works have proposed to
align retinal images with large differences in view angles
(e.g., 200◦ Optos UWF Colormaps and 55◦ MultiColor
images).

A major challenge in aligning UWF and NA images comes
from the perspective distortions in the UWF modality. Since
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retina is on the surface of a sphere (eyeball), it involves a
projection process to capture and visualize the 3D retina on a
2D flat array, which introduces distortions. Although retina
images always suffer from distortions from the projection,
the distortions of UWF images are significantly more visible
than those of NA images. For example, the stereographic
projection in Optos’s UWF system sets the cornea as its
camera view point, which leads to significant distortions in
peripheral retina area, such that peripheral patterns appear
larger than their actual sizes. On the other hand, NA images
are projected based on more distant view points, and thus
bear less perspective distortions. Therefore, different projec-
tion methods between UWF and NA make registration more
difficult, since the peripheral distortions cannot be corrected
by a conventional 2D-to-2D planar transformation model
(e.g. perspective transformation).

The distortion correction for UWF images is also related
to retinal curvature estimation and 3D reconstruction. For
example, Chanwimaluang et al. [13] proposed to estimate
retinal curvature from NA image sequences through Structure
From Motion which incorporates constraints on ellipsoid
surface and lens distortions. Ataer-Cansizoglu et al. [14]
set up a 3D fundus reconstruction method from image
sequences, where the 3D surface parameters and camera
poses are estimated by minimizing re-projection errors. They
also explored different 3D models for reconstruction. Probst
et al. [15] applied a 3D reconstruction model to stereo
microscope for retinal microsurgery. Dan et al. [16] set
up a 2D registration and 3D reconstruction pipeline, where
their reconstruction model was merely based on existing
camera parameters and was apart from their registration
pipeline. However, these methods mainly focus on building
3D models from single-modal NA images, and the multi-
modal registration between 2D UWF and NA images has
not been investigated.

In order to reduce the projection distortion of UWF
images in multi-modal registration, we propose a distortion
correction method on UWF images. Specifically, the 2D
UWF pixels are first projected back to their 3D positions on
the eyeball through the inverse stereographic projection, and
then remapped to a 2D plane based on the average projection
parameters for NA images. Since most of the UWF and NA
images are centered on the fovea, we assume that they share
a same optical axis in projection. The assumption simplifies
the 3D-to-2D remapping process, so that we only need to
estimate the view point of the NA images, as shown in Fig.
3.
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Fig. 1. Proposed registration pipeline for UWF and NA retinal images.
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Fig. 2. Training scheme of the vessel segmentation network for NA images.

Besides, we propose a complete CNN-based registration
pipeline for UWF and NA images, which consists of net-
works for vessel segmentation, feature detection, and outlier
rejection in addition to the distortion correction. We also
set up a new training scheme for the vessel segmentation
network on NA images, and adopt the polynomial transfor-
mation model to improve registration performance.

II. PROPOSED REGISTRATION PIPELINE

Fig. 1 shows the proposed registration pipeline where the
vessel structures from both input images are first extracted
using two independent segmentation networks. Next, key-
points from both images are detected by a feature detection
network, and then paired through a matching process. Fur-
thermore, the UWF image and its coordinates in the matched
keypoints are corrected through our proposed distortion
correction module, which is detailed in Section III. Finally,
a transformation matrix is estimated by an outlier rejection
network from the corrected matched keypoints, and the UWF
image can be aligned with the NA image.

A. Vessel Segmentation Network

We adopt the pre-trained vessel segmentation network
[17] for the UWF modality. In order to train the other
segmentation network for NA images, we build a modified
learning framework based on [18] as shown in Fig. 2, where
the weights of the segmentation network for UWF are frozen
during the training process. The input UWF images are
coarsely aligned to NA images based on manual labels, and
then cropped to the overlapped area as in the NA images. We
train the vessel segmentation network for NA image with a
combination of two loss terms as

Lseg = λpcLpc + λsmLsm. (1)

where Lpc and Lsm are photometric consistency loss and
smoothness loss in the optical flow networks [19], respec-
tively. The loss function enables the segmentation network to
predict NA’s vessel maps that can be aligned with the UWF
vessels. As shown in Fig. 1, the vessel segmentation results
are denoted as Iuwf-s and Ina-s for UWF and NA images,
respectively. The UWF vessel map Iuwf-s will be corrected
to remove distortion in the following distortion correction
module, which is denoted as I ′uwf-s.

B. Feature Detection and Matching Network

In this paper, we adopt the SuperPoint [20] network as the
feature detection network. The network is pre-trained on a
multi-modal retinal image dataset with color fundus and in-
frared reflectance images [12]. It takes an uncorrected vessel
map (Iuwf-s or Ina-s) as an input, and outputs a keypoint
heatmap and its corresponding descriptor tensor. Then, the
keypoints are obtained through Non-Maximum-Suppression
on the heatmap, and their coordinates are denoted as (m,n)
and (u, v) in the UWF and NA images, respectively. The
correspondence p = [(m,n, u, v), ...] ∈ RN×4 between
the two images is established by a bi-directional matching
algorithm for the keypoints, where N is the number of
matched keypoint pairs. In a matched pair, the UWF’s feature
should be a best match for the NA’s feature, and vice versa.
Readers can refer to [12], [20] for more details.

After keypoint matching and before the outlier rejec-
tion network, the UWF keypoints’ coordinates (m,n)
are corrected by the distortion correction method as
(m′, n′). Therefore, the correspondence is updated as p′ =
[(m′, n′, u, v), ...].

C. Outlier Rejection Network

We use the outlier rejection network structure [21], which
was pre-trained on the other retinal dataset [12] and then fine-
tuned on our dataset. The network takes the correspondence
p′, and outputs scores s ∈ RN×1 for all correspondences,
which is similar to RANSAC [22]. Then, the scores are
translated into weights as w = tanh(ReLU(s)), where
wi ∈ [0, 1). Finally, transformation matrices are estimated
based on p′ and w using weighted least square methods,
where both affine transformation matrix Maff ∈ R2×3 and
2nd-order polynomial transformation matrix Mpoly ∈ R2×6
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are obtained. The affine matrix is only used in Lr of Eq.
(5) during training, because we only have ground-truth for
it. Meanwhile, the polynomial matrix is used for image
warping, since it has shown advantages in retinal image
registration [23].

During network training, we define the loss function as

Loutlier =λcLc(p
′, s,Mgt) + λrLr(Mgt,Maff )+

λd

(
1−Dice

(
STN(Mpoly, I

′
uwf-s), Ina-s

)) (2)

where Mgt ∈ R2×3 is a ground-truth affine matrix, and
STN(·) is an image warper [24]. Lc is a classification
loss (Binary Cross Entropy Function) between the estimated
scores s and ground-truth inliers

Lc(p
′, s,Mgt) =

1

N

N∑
i=1

γiBCE
(
yi, σ(si)

)
(3)

where σ(·) is a sigmoid function, γi is a balancing factor for
positive and negative samples, and yi ∈ {0, 1} is the inlier
ground-truth. The inliers are computed from Mgt as

yi =

{
1,

∣∣∣∣T ((m′, n′),Mgt

)
− (u, v)

∣∣∣∣ ≤ 5 pixels

0, otherwise
(4)

where T (·) translates a UWF keypoint (m′, n′) into NA’s
coordinate based on Mgt. A keypoint pair with distance less
than 5 pixels in NA’s coordinate is considered as an inlier.
Next, Lr is a regression loss between Maff and Mgt, which
is defined as

Lr = MSE(Mgt −Maff ). (5)

Finally, Dice is derived to measure the overlapping degree
between two vessel maps, which is written as

Dice(I1, I2) =
2 ·
∑(

ele min(I1, I2)
)∑

I1 +
∑
I2

. (6)

Readers can also refer to [12] for more details.

D. Learning Process

First, we train the segmentation network for NA images
using manually aligned image pairs as described in section
II-A. Then, the outlier rejection network in Section II-C is
trained without the distortion correction module, i.e., using
the uncorrected UWF vessel maps I ′uwf-s ← Iuwf-s and
keypoints p′ ← p. Finally, with all networks’ weights frozen,
the view point of the NA images is estimated in the distortion
correction module on the training dataset, which will be
detailed in the next section.

III. DISTORTION CORRECTION

The distortion correction process can be separated into two
steps, i.e., a 2D-to-3D projection which maps the original
UWF image back onto the eyeball, and a 3D-to-2D projec-
tion that casts a 3D point on the eyeball to a 2D image plane
based on a new view point.

y
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Cornea
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Fig. 3. Illustration for the distortion correction process. On the left side,
the original UWF pixel (X,Y,−1) (blue dot) is first mapped to its 3D
position (x, y, z) on the eyeball (red dot), and then projected to a new 2D
position (X′, Y ′,−1) on the image plane (green dot). The blue and green
stars are the view points of UWF and NA images respectively. Right side
shows the 2D UWF images before and after correction.

A. 2D-to-3D Projection

Optos’s instruments comply with the DICOM standard for
Wide Field Ophthalmic Images [25] for UWF imaging and
storage. The captured 3D retinal data are transformed into the
2D UWF images based on stereographic projection. When
comparing this projection to a pinhole camera projective
model, the view point (lens) is located at the cornea, and
the optical axis is from cornea to fovea.

We set up a 3D coordinate system as shown in Fig. 3.
Specifically, we set the zero point (0, 0, 0) at the sphere
center and the sphere radius as 1 (i.e. a unit sphere)
for convenience, which is different from the mathematical
derivations in the DICOM standard [25]. The coordinate for
UWF’s view point (cornea) is (0, 0, 1). Besides, in order
to reduce peripheral patterns instead of enlarging the fovea
in the correction process, we set the UWF imaging plane
(sensor) at the back of the eyeball. Therefore, in the 2D-
to-3D projection process, the mapping functions between a
2D point (X,Y,−1) on the UWF image plane and its 3D
position (x, y, z) on the sphere are written as

(x, y, z)=

(
4X

4+X2+Y 2
,

4Y

4+X2+Y 2
,
−4+X2+Y 2

4+X2+Y 2

)
(7)

(X,Y ) =

(
2x

1− z
,

2y

1− z

)
. (8)

B. 3D-to-2D Projection

We assume that the 3D-to-2D projection process uses a
same optical axis as the stereographic projection, since most
of our UWF and NA images are centered on fovea. We set
(0, 0, d) as the position of the new viewing point, i.e., the
lens position of the NA imaging system, where d ≥ 1. The
3D point (x, y, z) on the sphere is remapped to (X ′, Y ′,−1)
on the image plane based on NA’s view point (0, 0, d). We
have equations from two pairs of similar triangles (shown by
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Fig. 4. Conversion between pixel coordinates and sphere coordinates (in
x− z plane).

red lines in Fig. 3) as

x

X ′
=

y

Y ′
=
d− z
d+ 1

, (9)

and the remapped 2D point is derived as

(X ′, Y ′; d) =

(
d+ 1

d− z
· x, d+ 1

d− z
· y

)
. (10)

Inversely, to obtain (x, y, z) from (X ′, Y ′,−1), we can
combine Eq. (9) with the unit sphere constraint x2+y2+z2 =
1, and derive

az2 + bz + c = 0, (11)

where a = (X ′2+Y ′2)/(d+1)2+1, b = 2d(X ′2+Y ′2)/(d+
1)2, and c = d2(X ′2+Y ′2)/(d+1)2−1. The solution to z is

z =
−b−

√
b2 − 4ac

2a
, (12)

where only the point closer to the image plane is used.
Finally, we can write the 3D coordinate as

(x, y, z; d) =

(
d− z
d+ 1

X ′,
d− z
d+ 1

Y ′, z

)
. (13)

C. Coordinate Conversion

In the correction process, a scaling conversion is needed
between (m,n) in the image pixel coordinate and (X,Y ) in
the sphere coordinate (or between (m′, n′) and (X ′, Y ′)).
α and β are the view angles (with regard to the sphere
center) of the 2D image center pixel in the x and y directions
respectively, as shown in Fig. 4. Then, the width and height
of the center pixel are 4·tan(α/4) and 4·tan(β/4), which are
used as the scaling factors for the conversion. Consequently,
the conversion is written as

(X,Y )← (m · 4tan(α/4), n · 4tan(β/4)), (14)

(m,n)←
(
X/(4tan(α/4)), Y/(4tan(β/4))

)
. (15)

In Optos’s UWF DICOM files, α and β are defined in tags
(0028,1528) and (0028,1529) as Center Pixel View Angle
of X and Y coordinates. In our dataset, we set α = β =
0.08596515◦ for all UWF images, since they are from a same
instrument model.

D. Correction Process

To correct the correspondence, i.e., p→ p′, we
(a) first scale (m,n) in p into (X,Y ) by Eq. (14),
(b) then obtain its 3D location (x, y, z) via Eq. (7),
(c) next remap it to a new position (X ′, Y ′) for a given d
via Eq. (10),
(d) finally get the corrected keypoint (m′, n′) by Eq. (15).

Meanwhile, to correct the UWF image pixels (e.g.,
Iuwf-s→ I ′uwf-s), we need to get the interpolation position
(m,n) in the original image, from every pixel (m′, n′) in
the corrected image. We
(a) first scale (m′, n′) into (X ′, Y ′) via Eq. (14),
(b) then get the 3D position (x, y, z) by Eq. (13),
(c) next obtain (X,Y ) via Eq. (8),
(d) finally get the sampling position (m,n) via Eq. (15).
Bilinear interpolation and STN(·) are used in image warping.

E. View Point Estimation

The optimal view point position d = doptimal is derived
through Algorithm 1. The NA vessel map Ina-s, the uncor-
rected UWF vessel map Iuwf-s and their correspondence
p are pre-computed on the training set to avoid repeated
computation. The algorithm searches for doptimal in mul-
tiple loops with decreasing step (i.e., increasing searching
accuracy). In a current loop, it searches over several can-
didate view point positions dc. At each dc, the algorithm
corrects UWF vessel maps Iuwf-s and correspondence p,
then estimates transformation matrix Mpoly for each image
pair, and warps the corrected UWF vessel map again with
the matrix. An average Dice value over all training pairs is
computed and stored for each dc. At the end of each loop,
doptimal is updated as the dc with the highest Dice. In the
next loop, loop+ 1, we search around doptimal in a smaller
range [be, en] but with a finer step. We do not use Gradient
Descent algorithms due to their low speed.

For simplicity, an optimal d is found by searching over
the whole training dataset, and then applied for all testing
UWF images. We initialize the algorithm by be = 1, en = 3,
step = 1/4, ext = 4, and loop = 4.

IV. EXPERIMENTS

A. Settings

We collected 116 image pairs, consisting of 200◦ Optos
UWF Colormaps as well as 55◦ MultiColor (MC) images
from Heiderburg’s Spectralis platform for the NA modality.
The resolution of the MC images is 768×768, and most MC
images are centered around the fovea. The original resolution
of UWF images is 4000× 4000. For each pair, we manually
label 3 pairs of corresponding points, and then estimate the
2D affine matrix Mgt as ground-truth.

In the experiments, we crop the center 2000 × 2000 part
of UWF images to remove most non-retina patterns. We
randomly separate the dataset by half as Set 1 and 2. We
use Set 1 for training and Set 2 for testing, which is denoted
as Set 1-2, and vice versa as Set 2-1.

4089



Algorithm 1: Searching for optimal d
Result: An optimal d = doptimal.
Initialization: (1) Pairs of UWF and NA vessel maps
{(I(i)uwf-s, I

(i)
na-s), ...}, and correspondence {pi, ...};

(2) Outlier rejection network (trained and frozen);
(3) A dictionary D → {k : v} for storing results;
(4) Searching range [be, en], step, ext, and loops;
for loops do

for dc = be : step : en do
if dc exists in D then

Go to Next loop;
end
for i-th image pair & correspondence do

Image correction with dc:
I
(i)
uwf-s→I

(i)′

uwf-s;
Keypoint correction with dc: pi → p′i;
Get transformation matrix from outlier

rejection network: p′i → w→Mpoly;
Warp I(i)

′

uwf-s based on Mpoly;
Compute and save Dice value between
Ina-s and the warped I(i)

′

uwf-s;
end
D[dc] = Average Dice over all pairs;

end
Find doptimal from the largest Dice value in D;
step = step/2;
be = doptimal − step× ext;
en = doptimal + step× ext;

end

In the learning process, the networks are trained separately
as described in Section II-D. (1) In the segmentation network
for MC images, we adopt a network [26] pre-trained on Color
Fundus images [12], [18] and finetune it on our dataset for
2000 epoches. We set learning rate as 1e-3, batch size as 1
with λpc=1e-3 and λsm=5e-4. (2) In the outlier rejection
network, we use the 2000× 2000 UWF images for training
and testing. The network is trained for 1000 epoches with
learning rate as 1e-4, batch size as 8, λc=1, and λr=λd=
0.1. The model with the highest Dice value on the training
set is saved for testing. For both networks, Adam optimizer
[27] is used.

In testing, we estimate three transformation models
(Affine, Perspective, and Polynomial) from w and p (or
p′), with/without distortion correction, which results in six
settings in evaluation results.

The networks are implemented in PyTorch and trained on
a GTX 1080 Ti GPU. It takes about 18 hours to train the
segmentation network and about 10 hours to train the outlier
rejection network.

B. Evaluation Results

Table I shows the average Dice values and their standard
deviations on the two testing sets. We compare our method
with a conventional registration pipeline [3] that translates

TABLE I
AVERAGE DICE VALUES (STANDARD DEVIATION) ON TESTING SETS

Methods Set 1-2 Set 2-1
Before Registration 0.1727 (0.0208) 0.1841 (0.0246)
Phase-HoG-Ransac (Affine) [3] 0.3555 (0.1065) 0.3476 (0.0982)
Ours (Affine) 0.4244 (0.0990) 0.4151 (0.0728)
Ours (Affine + Correction) 0.4651 (0.1101) 0.4462 (0.0784)
Ours (Perspective) 0.4455 (0.1087) 0.4409 (0.0759)
Ours (Perspective + Correction) 0.4791 (0.1136) 0.4644 (0.0841)
Ours (Polynomial) 0.4620 (0.1251) 0.4501 (0.0991)
Ours (Polynomial + Correction) 0.4955 (0.1323) 0.4818 (0.1089)

Fig. 5. Registration results (cropped 800 × 800). Left column shows
mosaicked overlay of aligned images. Right column shows overlay of vessels
(red for UWF, green for MC, and yellow for the overlapping parts).

multi-modal images into Monogenical Phase signals [28] for
registration. The results of our proposed network (Affine) are
better than those in the conventional method by over 0.06 in
Dice value. Besides, as the complexity of the transformation
model increases (Affine → Perspective → Polynomial), the
average Dice also improves. This indicates that more non-
linear transformation is required to correctly align UWF
images with narrow-angle MC images. Finally, comparing
the results with distortion correction to those without correc-
tion, the average Dice improves around 0.03. Especially, the
results of Affine + Correction (6+1 parameters) even rivals
those of Polynomial (12 parameters), i.e., +0.03 on Set 1-2
and −0.04 on Set 2-1. It demonstrates the effectiveness of
our proposed distortion correction scheme.

In Fig. 5, which shows the registration results on a testing
image pair, the alignment quality is improved by incorporat-
ing the proposed distortion correction module, especially in
MC’s peripheral areas where misalignment is reduced after
correction as indicated by white arrows.

Fig. 6 shows the searching process for the optimal d on
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(a) Set 1-2: doptimal = 50/32.
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(b) Set 2-1: doptimal = 46/32.

Fig. 6. Searching process for d on the training sets.

the two training sets. All searched dc and their corresponding
average Dice values are plotted. As shown, the optimal d is
achieved at 50/32 for Set 1-2 and 46/32 for Set 2-1. In
addition, both curves are monotonically increasing and then
monotonically decreasing in general.

V. CONCLUSION

In this paper, we proposed a multi-modal registration
pipeline based on CNN for UWF and NA retinal images.
We also proposed a distortion correction module that remaps
the UWF images from the NA images’ view point, so that
peripheral distortions in the UWF images are reduced and
the registration performance can be improved. In the future,
we would extend our method into 3D space incorporating
more parameters for UWF distortion correction, and find the
optimal viewing distance for each image pair.
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