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Abstract—Due to their great success in learning a universal
object similarity metric, Siamese Trackers have been adopted
for motion tracking a Region of Interest (ROI) in Ultrasound
(US) image sequences. However, these Fully Convolutional
Siamese networks (SiamFC) offer no online adaptation of the
network and fail to take cues from the input sequence. The more
recent Correlation Filter Networks (CFNet) solve this problem
by learning the reference template online using a Correlation
Filter layer. In this work, we use the CFNet as our backbone
model and propose an advanced tracking algorithm (Seq-
CFNet) for tracking an ROI in US sequences by constructing
a sequential cascade of two identical CFNet. The cascade
with CFNet is novel and offers practical benefits in tracking
accuracy. Our method is evaluated on 10 different sequences of
a Carotid Artery (CA) dataset to track the transverse section of
the carotid artery. Results show that Seq-CFNet obtains better
Root Mean Square Error (RMSE) values than the baseline
CFNet as well as SiamFC, without significantly compromising
the speed.

Index Terms— Speckle Tracking, Correlation Filter Network,
Siamese Network, Convolutional Neural Network, Cascaded
Network

[. INTRODUCTION

Motion tracking of objects in Ultrasound (US) images is of
great clinical advantage as it lends numerous applications in
US diagnostics. For instance, real-time tracking of muscles
has been used to measure muscle and tendon contraction
velocity and strain [1]. Similarly, speckle tracking has ap-
plications in assessing myocardial function [2]. Therefore,
automated and accurate methods of tracking a given ROI
in an US image sequence are beneficial. Furthermore, due
to the instancy of the application, sub-pixel level tracking
estimates would be ideal.

Conventional techniques like Block Matching (BM) [3]
use a similarity metric like Normalized Cross Correlation
(NCC) to exhaustively evaluate all possible candidate image
blocks for finding the best match with the reference image
block. Analysis of correlation-based approaches has been
presented in [4]. Using a Kalman filter as a motion model
for guiding the search position has also been explored in
[5], [6] and [7]. For improving sub-pixel level accuracy
estimates, interpolation methods in the Radio Frequency (RF)
domain such as [8], kriging interpolation in [9] and iterative
projection in [10] have been proposed.

However, the problem with these methods is that they
are not largely data-driven and fail to exploit patterns in
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US images to improve localization. With the advancement
of deep learning in the computer vision community, it,
therefore, may be beneficial to adopt these deep learning
techniques for motion tracking in US images. This is the
approach followed in [11]. Here, a Fully Convolutional
Siamese network (SiamFC) [12] has been used to track ob-
jects. Correlation Filter Network (CFNet) [13] is an advanced
version of this network, where the reference template branch
uses an adaptive Correlation Filter (CF) layer to update its
template in the forward pass. To improve the sub-pixel level
accuracy and to model the appearance of objects in a better
way, a sequential cascade network that uses SiamFC as the
backbone has been implemented in [14]. Taking motivation
from this approach, we design a new sequential cascade
method with CFNet as the backbone, for tracking an ROI
in US images.

II. BACKGROUND

A. CFNet

CFNet is a more advanced version of SiamFC. The major
problem with SiamFC is that it does not do any online
adaptation. This strategy may not be optimal, since, if we
incorporate specific patterns and cues from the video at
run-time (forward pass), then, we can use it to tune the
internal state of the network to our advantage. Similar
to SiamFC, CFNet uses the same Convolutional Neural
Network (CNN) to learn the low-dimensional embeddings
for the reference and search blocks. The search image is
denoted by z, candidate image by x. The CNN learns some
embedding function, ¢, which has learnable parameters, p.
While, SiamFC optimizes for p by minimizing the cross-
correlation output, hy,(z, x) = ¢p(2)*¢,(x) with the ground-
truth, CFNet however, takes an additional step by learning
an updated template, w through Correlation Filter (CF). The
embedded template, ¢,(z), is passed through the CF layer
which is a well-known algorithm to efficiently update the
template online, by solving a ridge regression problem. This
is to say that the output of the reference template branch is,
hp.sb(z,x) = sw(py(2))*dp,(x) +b, where s and b are scale
and bias parameters respectively and w = w(¢,(2)) is the
CF layer [13]. CF finds the optimal template which is robust
against translations of the object. The parameters of w(x)
are updated during the forward pass of the network. Finally,
CFNet also updates its reference template using a weighted
moving average. A practical benefit of CFNet is that it gives
good results even if a weaker embedding network is used,
due to the presence of the CF layer.
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Architecture diagram of the proposed cascaded sequential correlation filter network. At any given tracking step, the reference branch is used

to compute the feature representation of the reference image using a Convolutional Neural Network (CNN). The search branch computes the feature
representation of the search image (cropped at the previous target position). The target size is estimated using the scale at which the cross-correlation score
was the maximum. The bold arrow in the diagram shows the sequential cascade step. The search image is cropped again at the rough position and passed
through the search image branch of the 2% CFNet. Our architecture is novel due to the connection steps between the two CFNet: The reference branch
is not evaluated again for this second step, instead, the previous feature map is combined with the current feature map using a weighted moving average

sum.

In this work, we design a new tracking network based on the
sequential cascade of two CFNet. Our network, although is
motivated by [14], yet differs from it in considerable ways:
We use two identical embedding functions as opposed to
using slightly different networks. While [14] considers lower
resolution images for the second pass, we do not change
the resolution, as it affects US image quality and hence
negatively affects the tracking accuracy. Finally, our network
is based on CFNet as opposed to SiamFC and the connection
is novel in the sense that the reference template is only
evaluated in the first pass.

III. METHODOLOGY
A. Data

We use pre-trained networks (trained on the ILSVRC [15]
general images dataset). Therefore, we consider the data for
evaluation only. We consider the B-mode US images for the
cross-section of the Carotid Artery (CA) as obtained from
[16] - [18]. Ten different image sequences from the CA
dataset were used to validate the efficacy of our networks. On
average, each sequence contains 20 US frames with ground-
truth annotations (centroid location and bounding box) of the
ROI provided.

B. Architecture of the Neural Network

Fig. 1 shows the architectural diagram of our proposed
neural network for tracking which we call, Seq-CFNet.
As mentioned earlier, we consider CFNet as the backbone
network. The tracking is done in two stages. First, the
reference branch of the 15! CFNet is evaluated to compute
the updated template. The search image is then cropped at
the previous predicted target location and evaluated through
the search branch of the 1°* CFNet. After cross-correlation,
we get the rough estimate of the target position.

To obtain a refined estimate, first, the search image is
cropped at the predicted rough target position. Then, the 2%
CFNet is used. However, only the search image and not the
reference image, is evaluated through the search branch of
the 2"¢ CFNet. The rationale behind this novel approach is
that it may not always be the case that the estimate after the
274 CFNet would be a local improvement in the rough target
estimate. It may happen, for example, that the rough target
estimate from the 1°% CFNet is slightly offset. In this case,
the reference template would get wrongly estimated and this
would lead to a further huge drift in the target’s predicted
position if the reference template is updated through the 27¢
CFNet again. Following the same reasoning, the target size
is also updated only once. We also confirmed this design
choice empirically and found that consecutive updates to the
template, deteriorate performance significantly. Finally, the
search embedding from the 2"¢ CFNet is cross-correlated
with the updated template to find the new target position.

Seq-CFNet’s CNN is composed of 5 blocks of convo-
lutional, batch normalization, and rectified linear activation
layers. Furthermore, the same embedding function is used
in the 2"¢ CFNet to prevent over-adaptation of the network
to the input sequence, and more importantly to reduce the
memory footprint of the network, as the same network object
can be evaluated twice without creating additional memory.

C. Experiments

We compared our network against the baseline CFNet
(no sequential cascade) and SiamFC. The baseline CFNet
is denoted as CFNet-5-Conv (i.e. it has 5 convolutional
layers in its embedding function). Our proposed network is
Seq-CFNet-5-Conv (both components of the cascade have 5
convolutional layers in the embedding function). We also
consider another variant of our proposed network, Seq-
CFNet-1-Conv which has a single convolutional layer in
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(a) through (d) show 4 consecutive frames from one of the Carotid Artery (CA) dataset sequences. The red box represents the ground truth. The

green box represents the output of the sequential cascade network (Seq-CFNet-5-Conv) and the blue box represents the output of CFNet-5-Conv. Note that

the green box stays closest to the red box.

the embedding function to analyze the trade-off between
speed and accuracy, as this network would be very light.
The metrics we consider are RMSE, (between the network’s
centroid predictions and available ground truth), IoU (In-
tersection over Union, of the predicted and ground-truth
bounding boxes), and Computational Time per Frame (CTF)
(in seconds). For tracking, the first frame with ground truth
was passed through the networks as the sole supervision.

IV. RESULTS AND DISCUSSION

Fig. 2 shows the results obtained by running our best
performing proposed tracker (Seq-CFNet-5-Conv) as well
as the baseline tracker (CFNet-5-Conv) on one of the CA
sequences.

A. RMSE of Centroid Locations

Fig. 3 shows the Lateral and Axial RMSE scores for
each sequence of the dataset (computed with respect to
the ground truth) for various networks. We note that
SiamFC performs the worst and shows a lot of vari-
ance across the sequences. Seq-CFNet-5-Conv gives the
best results in both, lateral and axial directions, as con-
firmed by Table I, which shows the results averaged over
all the 10 sequences. Note that the total RMSE, for
any given sequence, s;, is defined as: totalppysp(si) =
\/ZCLtGTCLZRMSE(Si)Q + azialpprse(s;)?. The difference in
total RMSE between CFNet-5-Conv and Seq-CFNet-5-Conv
is 0.12 which is significant for sub-pixel level accuracy. Seq-
CFNet-1-Conv, though gives the lowest lateral RMSE, it
performs poor on the axial RMSE. It, however, still does
better than CFNet-5-Conv on the total RMSE.

B. Intersection over Union (loU)

Table I summarizes the IoU results for the networks with
respect to the ground truth, averaged over the 10 sequences.
We observed that while SiamFC is less accurate, CFNet-5-
Conv and Seq-CFNet-5-Conv gave comparable results with
Seq-CFNet-1-Conv, slightly behind.

C. Computational Time per Frame (CTF) and Practical
Utility

All the experiments were conducted on an Intel Core
i5 8" Generation processor CPU running at 2.30 GHz
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Fig. 3. Represents RMSE plots against ground truth for each of the 10

sequences in the dataset. (a) Lateral RMSE and (b) Axial RMSE

TABLE 1
RMSE AND IOU VALUES FOR SIAMFC, CFNET-5-CONV,
SEQ-CFNET-5-CONV AND SEQ-CFNET-1-CONV AVERAGED OVER THE
ENTIRE 10 SEQUENCES FROM THE CA DATASET

Lateral | Axial Total

Method RMSE | RMSE | RMSE | IoU(%)
SiamFC 3550 | 3220 | 4792 | 83.080
CFNet3-Conv | 2208 | 2037 | 3.080 | 87.718
Seq-CENet->- 1 110 | 1987 | 2964 | 87.538
Conv

Seq-CENet-1- | 1 969 | 2,186 | 3.032 | 86.963
Conv

TABLE II

MEMORY FOOTPRINT AND CTF OF VARIOUS METHODS CONSIDERED

Model Size(in | CTF (in sec-

Method MB) onds)
StamFC 8571 0.29
CFNet:5-Conv | 14.196 043
Seq-CENet->- 114 196 0.92
Conv

Seq-CFNet-1-| g 3¢ 039
Conv

clock rate with 8 GB of RAM. Average CTF over the 10
sequences from CA was noted as can be seen in Table II.
It is expected that Seq-CFNet-5-Conv would be slow due
to running of the CFNet-5-Conv twice, which itself has a
large embedding network (5 convolutional layers). However,
Seq-CFENet-1-Conv is more feasible as it is only 1.2 times
slower than SiamFC, and gives considerably better results
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Fig. 4. (a) shows Lateral RMSE vs CTF plot for various methods. It shows
that Seq-CFNet-1-Conv is quite efficient as it achieves the lowest RMSE
without too much computation. (b) is similarly the plot for Axial RMSE
vs CTF for various methods and here Seq-CFNet-5-Conv gives the best
performance. (c) is the plot for total RMSE vs CTF for various methods.
Note that in (a) through (c), 100 * RMSE is plotted due to low range
of RMSE values. (d) shows IoU vs CTF plot for various methods, where
CFNet-5-Conv gives slightly better results than Seq-CFNet-5-Conv. Note
that all of these results represent the average over the 10 sequences.

than SiamFC in both RMSE and IoU metrics. Seq-CFNet-1-
Conv also gives better results than CFNet-5-Conv, achieving
a total RMSE of 3.032 as observed from Table I which is
0.05 pixels less than the latter.

Fig. 4 shows the CTF vs accuracy plots across all the
metrics for the various methods considered in this study. The
points in each plot are representative of the average results
over the 10 sequences of the CA dataset. From the plots,
it is observed that while Seq-CFNet-5-Conv gives the best
RMSE results and near best IoU results, it is computationally
more expensive. An efficient alternative is Seq-CFNet-1-
Conv which gives the lowest lateral RMSE and slightly lesser
overall RMSE than CFNet-5-Conv. At the same time, Seq-
CFNet-1-Conv is considerably faster than CFNet-5-Conv and
Seq-CFNet-5-Conv. SiamFC performs the worst in terms of
accuracy in all the plots.

Table II also shows the model size for each method. As
discussed before, we use the same network object for the
sequential cascade, which allows us to save large amounts
of memory. From the table, it is clear that Seq-CFNet-1-Conv
just takes 0.136 M B of the memory which is considerably
low. This is because it has a very weak embedding function.
Due to the presence of the CF layer, even a weaker em-
bedding network like Seq-CFNet-1-Conv is able to perform
competitively.

V. CONCLUSION

In this work, we have designed a novel cascaded neural
network based on the correlation filter network and adopted
it for US images. CFNet offers a more efficient approach
for tracking objects in US images as the accuracy and
computational cost could be managed by varying the size
of the embedding network. The sequential cascade further
improves the CFNet by refining the predictions. Since we use
pre-trained networks in our work, one way to further improve
the accuracy of our approach would be to use a transfer

learning approach by training only a few final layers of the
networks on the ultrasound dataset. Our future work would
involve improving the cascade further by training on US
image datasets in an unsupervised manner and incorporating
a motion model.
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