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Abstract— Cross-subject EEG-based emotion recognition
(ER) is a rewarding work in real-life applications, due to
individual differences between one subject and another sub-
ject. Most existing studies focus on training a subject-specific
ER model. However, it is time-consuming and unrealistic
to design the customized subject-specific model for a new
subject in cross-subject scenarios. In this paper, we propose an
Adversarial Domain Adaption with an Attention Mechanism
method for EEG-based ER, namely ADAAM-ER, to decrease
the individual discrepancy. ADAAM-ER consists of a Graph
Convolution Neural Networks with CNNs (GCNN-CNNs) and
an Adversarial Domain Adaption with a Level-wise Attention
Mechanism (ADALAM). Specifically, GCNN-CNNs as a feature
extractor, which constructs a broader feature space, is designed
to obtain more discriminative features. And ADALAM, which
can decrease the individual discrepancy by alignment of the
more transferable feature regions, is introduced to further
obtain the discriminative features with higher transferability.
Consequently, the proposed ADAAM-ER method can design
a more transferable emotion recognition model with more
discriminative features for a new subject via improving trans-
ferability. Experimental results on the SEED dataset have
verified the effectiveness of the proposed ADAAM-ER method
with the mean accuracy of 86.58%.

I. INTRODUCTION

Emotion plays an essential role in our daily lives. With

the continuous development of human-computer interaction,

EEG-based emotion recognition (ER) has become an attrac-

tive research topic. However, individual differences between

one subject and another subject lead to shift in data distri-

bution and degrade the performance of cross-subject ER.

There have been several attempts to decrease the individual

discrepancy. One technique is feature selection. For example,

[1] and [2] select features that are common in the source

and target domains, and construct a robust ER model based

on these selected features. Another technique is the general

domain adaption. Lan et al. [3] led a comparative study

on several general domain adaptation techniques, such as

transfer component analysis (TCA) [4], subspace alignment

(SA) [5], etc. They found that the subject independent
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(a) Without-DA (b) General-DA (c) Ours

Source samples: Target samples: Source Classifier: 

Fig. 1. The illustration of different domain adaptation strategies. (a) shows
classification without domain alignment, (b) shows the general domain
adaptation, which forces alignment of some completely dissimilar features
may lead to negative transfer, and (c) our proposed ADAAM-ER pays
more attention to more transferable feature regions (darker colors indicate
higher transferability), and aligning those regions minimizes the discrepancy
between source and target.

classification accuracy can be improved by around 10%

through domain alignment. However, the two techniques

have a limitation, that is, they need shallow handcrafted

features whose discriminativeness may not strong enough to

represent emotions.

Deep learning is helpful to obtain deep discrimimnative

representation for ER. For example, Song et al. [6] generated

deep discriminative representation through dynamical graph

convolutional neural networks (DGCNN) to learn the intrin-

sic relationships between EEG channels. Zhang et al. [7]

utilized broad concept to concatenate all hierarchical features

to build a broad feature space. Although they maintain the

feature discriminativeness, they did not explore transferabil-

ity of the features.

Recently, deep domain adaptation embedding domain

adaptation modules into deep learning has yielded satisfac-

tory results in knowledge transferring in computer vision

[11]. For example, Jin et al. [8] first applied adversarial

domain adaption [12] into EEG-based ER, which archives

a significant improvement by learning both discriminative

and transferable features. Later, Li et al. [9] and Zhong et

al. [10] extended the feature extractor of [12] to further im-

prove feature discriminativeness. In Figure 1, compared with

non-domain adaptation strategies (Fig. 1 (a)), the domain

adaptation strategies (Fig. 1(b)) can decrease the distribution

difference between a subject and another subject to some

extent, but it may lead to negative transfer, which result in

degradation the ER performance in cross-subject scenarios.

Since there is only one domain discriminator, which means

that all features are regarded as a whole to be transferred

or not. However, features in the feature space do not have

the same transferability, and taking advantage of this can
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TABLE I

A COMPREHENSIVE COMPARISON OF SOME EXISTING WORKS

Ref. Strategies Feature Extraction
Advantages

BFS DEF TEF

[1] Feature Selection Handcrafted Features × L L

[2] Feature Selection Handcrafted Features × L L

[4] General-DA Handcrafted Features × L L

[5] General-DA Handcrafted Features × L L

[6] Without-DA Deep Features × H L

[7] Without-DA Deep Features
√

H L

[8] General-DA Deep Features × M M

[9] General-DA Deep Features × H M

[10] General-DA Deep Features × H M

Ours ADALAM Deep Features
√

H H

* In the table, BFS denotes Broader Feature Space, DEF denotes
Discriminativeness of Emotion Features, TEF denotes Transferability
of Emotion Features.
* We denote the discriminativeness and transferability of emotion
features in the table as High(H), Middle(M) and Low(L).
* In the table, ADALAM denotes Adversarial Domain Adaption with
a Level-wise Attention Mechanism.

improve the ER performance.

In this paper, we propose an Adversarial Domain Adap-

tion with an Attention Mechanism method for EEG-based

ER (ADAAM-ER) to decrease the individual discrepancy.

ADAAM-ER consists of two parts, one is a Graph Convolu-

tion Neural Networks with CNNs (GCNN-CNNs), which is

used to extract multi-level discriminative representations as a

feature extractor. Inspired by GCB-net [7], multiple regular

CNNs after graph convolution are stacked to learn high-level

emotion representations. The other one is an Adversarial

Domain Adaption with a Level-wise Attention Mechanism

(ADALAM), which is used to decrease the distribution shift

between source subjects and target subject. Technically, we

divide the multi-level feature space into regions, and each

region corresponds to a domain discriminator. After the

training, the regions, which are hard to distinguish by domain

discriminators, are considered to have better transferability

relatively. By assigning greater weight to those regions, the

training concentrates on alignment of the more transferable

regions (Fig. 1 (c)). So the proposed ADAAM-ER method

can design a more transferable ER model with more dis-

criminative features via improving transferability. Table I

compares our proposed method with the above EEG-based

ER classification methods [1], [2], [4]–[10], and it can be

seen that our proposed method more advantageous in terms

of feature discriminativeness as well as transferability.

In summary, the contributions of this paper are as follows:

• We propose an Adversarial Domain Adaption with At-

tention Mechanism ADAAM-ER method to recognize

emotions based on EEG. Compared with the existing

cross-subject ER methods, the proposed ADAAM-ER

method can extract both discriminative and transferable

features, which improves ER performance in cross-

subject scenarios.

• GCNN-CNNs as a feature extractor, which is con-

structed a broader feature space, aims to obtain more
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Fig. 2. The framework of the ADAAM-ER method, which consists of
a Graph Convolution Neural Networks with CNNs (GCNN-CNNs) and
an Adversarial Domain Adaption with a Level-wise Attention Mechanism
(ADALAM). GCNN-CNNs as a feature extractor Gf , which constructs a
broader feature space. And ADALAM, which can decrease the individual
discrepancy by alignment of the more transferable feature regions.

discriminative features. And to further obtain the dis-

criminative features with higher transferability, an Ad-

versarial Domain Adaption with a Level-wise Atten-

tion Mechanism (ADALAM) is designed to decrease

the individual discrepancy by alignment of the more

transferable feature regions.

• Comprehensive experiments on the SEED dataset

clearly demonstrated the effectiveness of the proposed

method and achieves the mean accuracy of 86.58%.

II. THE PROPOSED METHOD

The framework of the proposed method is shown in Fig. 2.

The data from source subjects (training subjects) and a target

subject (test subject) input to the feature extractor Gf by

GCNN-CNNs to obtain multi-level discriminative emotion

representations. Then, the output of feature extractor fed into

a label predictor Gy and multiple domain discriminators Gd

in parallel, resulting in classification loss and transfer loss.

After backpropagation, the label predictor Gy guarantees the

discriminativeness of features, and the domain discriminators

Gd ensure the domain-invariance via the Adversarial Domain

Adaption with a Level-wise Attention Mechanism. More

details are demonstrated as follows.

A. Graph Convolution Neural Networks with CNNs

ADAAM-ER applies the graph convolution neural net-

works with stacked regular CNNs (GCNN-CNNs) to extract

discriminative features. The differential entropy (DE) [13]

matrix extracted from each EEG channel separately of source

(training data) and target (test data) will be input to GCNN to

capture structure information between different EEG chan-

nels, then use multiple regular CNNs for further abstraction

of features.

1) Graph Representation: The DE matrix input to the

GCNN needs to be converted into a representation of

the graph structure. Motivated by DGCNN [6], each EEG
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channel is considered as a vertex node in graph, and the

connection between two different vertex nodes corresponds

to an edge of the graph.

The undirected graph can be represented as G = (V, E ,A),
where V is the set of n nodes and E is the set of edges con-

necting these nodes. A ∈ R
n×n is the weighted adjacency

matrix to represent the edge set E , each entry Aij indicates

the connection between ith node and jth one.

2) Spectral Graph Filtering: Spectral graph filtering uses

graph Fourier analysis, which depends on symmetric nor-

malized Laplacian matrix L = I − D− 1
2AD− 1

2 of graph,

where D ∈ R
n×n is a diagonal matrix and I is an identity

matrix. L can be decomposed as L = UΛUT , where

U is the orthonormal eigenvector matrix of L and Λ =
diag(λ0, λ1, ..., λn−1) ∈ R

n×n is a diagonal matrix with

corresponding eigenvalues. Given graph signal X, the graph

Fourier transform of X is X̂ = UTX, and its inverse

transform is X = UX̂. Therefore, the graph convolution

between X and a filter G is defined as

X ∗G = U((UTG)� (UTX)) = Ug(Λ)UTX, (1)

where � is the Hadamard product and g(Λ) =
diag(g(λ0), g(λ1), ..., g(λn−1)) denotes a diagonal matrix

with n spectral filter coefficients.

Directly computing g(Λ) is too expensive. K-order

Chebyshev polynomial is adopted to approximate g(Λ) as

follows

g(Λ) =
K−1∑
k=0

θkTk(Λ̃), (2)

where θk is the Chebyshev polynomial coefficient and Tk(x)
can be recursively calculated according to the following

expressions{
T0(x) = 1, T1(x) = x

Tk(x) = 2xTk−1(x)− Tk−2(x), k ≥ 2
, (3)

Hence, the filtering operation can be converted as follows

Ug(Λ)UTX = U(

K−1∑
k=0

θkTk(Λ̃)))UTX =
K−1∑
k=0

θkTk(L̃))X,

(4)

where L̃ = 2L
λmax

− I. So the output of K-order Chebyshev

graph convolution can be represented as

GCNN(X) = ReLU(((
K−1∑
k=0

θkTk(L̃))X) · θgcnn), (5)

where θgcnn is the matrix of all parameters learned in GCNN.

ReLU is used to increase nonlinearity. The abstract represen-

tations computed by GCNN(x) are fed into the following

regular CNNs to obtain higher-level features. After several

regular convolution, features of all layers are concatenated

as follows:

Gf (X) = [GCNN,CNN1, CNN2..., CNNl], (6)

where Gf represents the GCNN-CNNs feature extractor to

extract discriminative emotion-related features.

B. Adversarial Domain Adaption with Level-wise Attention
Mechanism

The idea of adversarial learning has a wide range of

applications in deep learning and is usually used to improve

the robustness of learning methods [14]. Adversarial domain

adaptation is the alignment of source and target domain fea-

ture spaces through adversarial learning of feature extractors

and discriminators.

As mentioned before, not all features extracted by Gf are

equally transferable and using only one domain discriminator

does not make better use of those features that have higher

transferability. Therefore, to better lower the influence of

individual difference, we extend the adversarial domain adap-

tion by proposing adversarial domain adaption with attention

mechanism. Specifically, we divide the features of each level

into two regions, each region corresponding to a domain

discriminator. As shown in Fig. 2, there are K domain

discriminators Gk
d, k = 1, 2, ...,K. Applying this to all K

domain discriminators Gk
d, k = 1, 2, ...,K yields

Ld =
1

Kn

K∑
k=1

∑
xi∈(Ds∪Dt)

Lk
d(G

k
d(f

k
i ), di), (7)

where fk
i = (Gf (xi))

k is the concatenated representation

of GCNN-CNNs in region k, di ∈ 0, 1 serves as the domain

label for the i-th sample xi, L
k
d is the cross-entropy loss of

the domain discriminator Gk
d . The output d̂ki = Gk

d(f
k
i ) of

each domain discriminator Gk
d is the predicted probability

of the region k of sample i belonging to the source domain.

When the probability is close to 1, it means the region k

belongs to the source domain, and 0 indicates it belongs

to the target domain. We focus on the more transferable

regions by giving more weight to those. We apply the entropy

criterion E(p) = −∑
j pj ·log(pj) to give the transfer weight

for each region k as:

wk
i = 1− E(d̂ki ), (8)

Therefore, the fk
i are transformed using transfer weight

as

mk
i = (1 + wk

i ) · fk
i , (9)

In this way, the feature region with strong transferability

will get more attention.

C. Optimization of ADAAM-ER

After the transformed features mi are obtained, the prob-

ability that sample i belongs to the emotion class (positive,

neutral, negative) can be computed as follows

Gy(mi) = softmax(fc(mi)), (10)

where fc(mi) = mi · θy is the output of fully connected

layer.
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TABLE II

MEAN ACCURACIES AND STANDARD DEVIATIONS (%) OF DIFFERENT

METHODS IN THE SUBJECT-INDEPENDENT EXPERIMENT ON SEED

Method Accuracy (mean/std)
SVM [15] 56.73/16.29
TCA [4] 63.64/14.88
SA [5] 69.00/10.89

DAN [8] 79.19/13.14
DGCNN [6] 79.95/09.02
GCB-net [7] -

R2G-STNN [9] 84.16/07.63
RGNN [10] 85.30/06.72

Ours 86.58/08.41

Integrating all things together, the objective of ADAAM-

ER is

C0(θf , θy, θd|Kk=1) =
1

ns

∑
xi∈Ds

Ly(Gy(mi), yi)

− λ

Kn

∑
xi∈D

Lk
d(G

k
d((Gf (xi))

k), di),

(11)

where n = ns + nt, D = Ds ∪ Dt, Gy(mi) and yi are

the vectors of predicted labels and true labels respectively,

Ly(·, ·) is the loss of class label prediction and λ is a hyper-

parameter that balances the two objectives in the unified

optimization problem. The minimax optimization problem is

to find the network parameters θ̂f , θ̂y and θ̂kd(k = 1, 2, ...,K)
that jointly satisfy

(θ̂f , θ̂y) = arg min
θf ,θy

C(θf , θy, θ
k
d |Kk=1),

(θ̂1d, ..., θ̂
K
d ) = arg max

θ1
d,...,θ

K
d

C(θf , θy, θ
k
d |Kk=1).

(12)

where θf are the parameters of feature extractor, θkd are

the parameters of domain discriminator Gk
d , θy are the

parameters of label predictor.

The proposed method focus more on transferable regions

between different levels to achieve a better domain alignment

via attention mechanism.

III. MATERIALS

A. EEG Dataset

In this paper, we evaluate the proposed method on a public

dataset called SJTU Emotion EEG Dataset (SEED) [16]. The

SEED dataset consisted of 15 subjects who collected 62-

channel EEG data, each subject watched multiple well-edited

movie clips of positive, neutral, and negative categories.

B. Signal Processing and Feature Extraction

For signal processing, the preprocessed EEG data pro-

vided by SEED was down-sampled to 200 Hz. A bandpass

frequency filter from 0-75 Hz was applied. A 512-point

short-time Fourier transform with a non-overlapped Hanning

window of 1s was used to extract the frequency domain

features for each channel [13].

For feature extraction, SEED provides several extracted

EEG features on five frequency bands. [13] has shown that

Fig. 3. The accuracies of three models (Without-DA, General-DA, Ours)
for 15 subjects and the mean accuracy. Our ADAAM-ER outperforms the
other models on each subject.

DE feature on Gamma band and total five frequency bands

are more relevant to emotion than other sub-bands, like

Delta, Theta, Alpha, and Beta. [7] also demonstrates that

DE features on total five frequency bands achieve the best

performance. Hence, we choose DE features on total five

frequency bands as the input of our method.

IV. RESULTS AND DISCUSSION

In this section, we will discuss the experiment results of

the proposed method on the SEED dataset.

A. Classification Performance

We adopt subject-independent to evaluate the proposed

method, in which the training EEG data and the testing ones

come from different subjects.

Table II presents the classification accuracies and standard

deviations of the state-of-the-art methods. We can discover

the proposed method outperforms others with a mean ac-

curacy of 86.58%. The standard deviation of ADAAM-

ER is not the smallest, because the result of subject 4 is

extremely low. The major performance improvement can

be attributed to two factors: 1) the proposed method uses

features of multiple levels to form a broader feature space,

so more distinguishing representation can be extracted; 2)

the proposed method focuses on the regions of the feature

space with good transferability, and aligning these regions

can make knowledge transfer better.

B. Ablation Study

We conduct ablation studies on the SEED dataset to

illustrate the effectiveness of each component in the proposed

method. Specially, we compare the following three variant

models:

• Without-DA: only GCNN with stacked regular CNNs,

and without domain adaption;

• General-DA: the GCNN with stacked regular CNNs,

and with the global adversarial domain adaption;

• Ours: the GCNN with stacked regular CNNs, and with

the level-wise attention-based adversarial domain adap-

tion;

Fig. 3 shows the accuracies of three variant models for 15

subjects. Compared with the other two models, Without-DA

model has the lowest accuracy. General-DA model uses a
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(a) Raw DE (b) Without-DA

(c) General-DA (d) Ours

Fig. 4. The t-SNE of feature distribution of variant models in
the source domain and target domain. (red/green/blue dots: the nega-
tive/neutral/positive emotion in source domain, orange/purple/black dots:
the negative/neutral/positive emotion in target domain, gray dashed circle
dots: an emotion category in source and target domains.)

global domain discriminator, which assumes that the whole

feature space has the same transferability by default, which

may lead to negative migration. ADAAM-ER applies the

attention mechanism that allows the model to focus more

on those domain-invariant features to archive a significant

improvement in subject transferring.

We further visualize the feature distributions in 2-

dimensional space using t-SNE to indicate the effectiveness

of the proposed method. Fig. 4 shows the visualization of

the raw DE features, the embedded features of Without-DA,

General-DA and ADAAM-ER, respectively. We make the

following observations: 1) the raw DE features are scattered

in the source domain and the target domain; 2) after learning

by the Without-DA, features of different emotion categories

in the source domain are distinguishable. However, since

the domain adaptation has not yet been carried out, the

distribution difference of same category between the source

and target domain is obvious, so the performance of classifier

in the target domain is not good, we can see from Fig. 4 (b)

that the distributions of negative and neutral in the target

domain are mixed together; 3) after learning by the General-

DA, the difference in the distribution of source and target

domains is reduced to some extent, but still unsatisfactory; 4)

our ADAAM-ER restricts the distribution difference between

the source domain and the target domain, which make

source classifier more suitable for target data. Therefore, our

ADAAM-ER focuses on features with high transferability

to achieve a better domain alignment to improve the ER

performance in cross-subject scenarios.

V. CONCLUSION

In this paper, an Adversarial Domain Adaption with an

Attention Mechanism method for EEG-based ER is proposed

to design a more transferable emotion recognition model with

more discriminative features for a new subject by decrease

the individual discrepancy in cross-subject scenarios.

The proposed method extracts more discriminative fea-

tures by the Graph Convolution Neural Networks with CNNs

as the feature extractor. And the Adversarial Domain Adap-

tion with a Level-wise Attention Mechanism is introduced

to pay more attention on alignment of the more transferable

feature regions to decrease the individual difference between

one subject and another subject. Experimental results on the

SEED dataset have verified that the our proposed method is

able to effectively improve the cross-subject EEG-based ER

performance.
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