
  


 

Abstract— With the advancements in electronics technology, 

high-density (HD) EMG sensing systems have become available 

and have been investigated for their feasibility and performance 

in neural-machine interface (NMI) applications. Comparing to 

the traditional single channel-based targeted muscle sensing 

method, HD EMG sensing performs a sampling of the electrical 

activity over a larger surface area and has the promise of 1) 

providing richer neural information from one temporal and two 

spatial dimensions and 2) ease of wear in real life without the 

need of anatomically targeted electrode placement. To use HD 

EMG in real-time NMI applications, challenges including high 

computational burden and unreliability of EMG recordings over 

time need to be addressed. This paper presented an HD EMG 

PR based NMI which seamlessly integrates HD EMG PR with a 

Sensor Fault-Tolerant Module (SFTM) which aimed to provide 

robust PR in real time. Experimental results showed that the 

SFTM was able to recover the PR accuracies by 6%-22% from 

disturbances including contact artifacts and loose contacts. A 

Python-based implementation of the proposed HD EMG SFTM 

was developed and was demonstrated to be computationally 

efficient for real-time performance. These results have 

demonstrated the feasibility of a robust real-time HD EMG PR-

based NMI. 

I.  INTRODUCTION 

Electromyography (EMG)-based neural-machine 

interfaces (NMIs) have been studied and developed for 

decades to control neurorehabilitation systems such as neural 

prostheses which restore function for patients with limb loss 

or impairment [1]–[5]. The purpose of the EMG-controlled 

NMIs is to measure the muscle activities of relevant muscles, 

learn the patterns of collected EMG signals associated with 

different movement tasks, and make predictions of user’s 

intended movement for control of external applications. With 

the advancements in electronics technology, high-density 

(HD) EMG sensing systems, which generally consist of 16 to 

256 regularly spaced electrodes, have become available and 

have been investigated for their feasibility and performance 

in NMI applications [4], [6]–[8]. Comparing to the traditional 

single channel-based targeted muscle sensing method, HD 

EMG sensing performs a sampling of the electrical activity 

over a larger surface area and has the promise of 1) providing 

richer neural information from one temporal and two spatial 

dimensions [9] and 2) ease of wear in real life without the 

need of anatomically targeted electrode placement [6]. Some 

recent research findings have suggested that, comparing to 

traditional electrode placement method, HD EMG grids yield 
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better robustness to electrode shift [10]–[12] and higher 

accuracy for EMG pattern recognition (PR) [4], [8], [13]. In 

addition, it opens possibility of directly extracting motor 

neuron spike trains for neurorehabilitation using HD EMG 

decomposition [9], [14]–[16].  

To use HD EMG in real-time NMI applications, various 

methods have been explored to address the high 

computational burden associated with HD EMG sensing, 

including developing new computationally efficient features 

tailored to HD EMG [17], designing rapid EMG 

decomposition algorithms for real-time control of multi-

degree-of-freedom systems [6], [16], [18], and employing 

parallel computing technologies such as FPGA and GPU to 

accelerate the processing of HD EMG signals [19], [20].  In 

our previous work, a novel spatial-temporal feature set named 

Adjacent Features (AFs) has been developed to analyze the 

intensity and structure of the HD EMG signals and the 

similarities between adjacent electrodes [17]. The 

experimental results showed that the developed AFs were not 

only computationally efficient for HD EMG PR; they also 

resulted in higher accuracies than Hudgins’ time-domain 

(TD) features and autoregression (AR) based features for 

classifying various hand and wrist gestures [3].  

Unreliability of EMG recordings over time is a challenge 

for applying EMG-based NMIs in practice. Conditions such 

as electrode shifts, movement artifacts, environmental noises, 

loose electrode-skin contacts, muscle fatigue, and arm posture 

may cause variabilities in the EMG characteristics and thus 

threaten the reliability of EMG-based control [21]–[23]. 

Although HD EMG has shown more robustness to electrode 

shift than traditional electrode placement method [10]–[12], 

its use in practice is still challenged by variances and 

disturbances such as movement artifacts and bad contacts, 

especially given that it is recording with many electrodes 

simultaneously without anatomically targeted electrode 

placement [24]. Our previous work has developed a Sensor 

Faculty-Tolerant Module (SFTM) for EMG PR systems and 

has tested it on single-channel EMG-based NMIs [25]. The 

SFTM consists of multiple sensor fault detectors and a self-

recovery mechanism. The sensor fault detectors closely 

monitor the time-domain features of individual EMG signals 

to detect outliers, which are likely caused by disturbances. 

The self-recovery mechanism was developed by utilizing the 

information redundancy in multiple EMG signals. Our 

preliminary results have shown that removing one or two 
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signals from the system will not significantly reduce the EMG 

pattern recognition performance. When disturbances are 

detected on certain EMG channels, the self-recovery 

mechanism will remove features of the “abnormal” signals 

from the system, retrain the classifier, and perform 

classification using features from “normal” signals only. The 

SFTM has great potential to perform well or even better in 

HD EMG based NMIs because a large number of signals will 

result in much more redundant information in the EMG 

recordings. This redundancy (using dozens or even hundreds 

of sensors) allows for selected electrode outputs which 

contain artifacts to be discarded while still providing the 

classifier with an overall view of muscle activity. By 

comparison, a sparse EMG array discarding faulty electrode 

signals during a localized physical disruption may be losing 

information on entire muscles’ activity for the duration of the 

signal artifacts. In either case, gesture class separability is 

harmed by extracting features from artifacts or a critically 

incomplete electrode array. 

 This paper aimed to develop an SFTM for HD EMG PR 

based NMIs and evaluate its effectiveness on both commonly 

used TD and AR features as well as the newly developed AFs. 

A Python-based implementation of the proposed HD EMG 

SFTM was developed and tested on both normal EMG dataset 

and datasets contaminated by different types of disturbances. 

Performance metrics including the classification accuracy, 

system recovery performance, and CPU runtime were 

measured and analyzed.  

II. METHODS 

A. Architecture of the HD EMG SFTM 

Figure 1 shows the overall architecture of the proposed HD 

EMG PR based NMI, which consists of standard EMG PR 

modules coupling with the SFTM. The SFTM closely 

monitors the status of individual EMG input signals and 

responses accordingly to maintain system performance. The 

HD EMG input signals are preprocessed by amplifiers and 

filters and then segmented by overlapped sliding analysis 

windows. In each window, various features are extracted from 

each input signal and then fed to the SFTM. The signal fault 

detectors monitor the features of each EMG signal to detect 

anomalies. Based on the detection results, only the features 

extracted from normal channels are concatenated into a 

feature vector for pattern classification. If no anomaly is 

detected, the feature vector is directly sent to the classifier 

generated from the original training data. If one or more 

signals are determined as abnormal, a fast classifier retraining 

process is triggered and the feature vector derived from 

normal channels is fed to the new classifier for pattern 

classification. 

Signal Fault Detector: A Mahalanobis distance analysis-

based outlier detection method has been designed for 

individual HD EMG signal fault detection. We assume that 

disturbed signals are qualitatively different from EMG signals 

during normal motion activities. The detector is built only 

from normal training data without the need for prior 

knowledge of disturbed data. If a new piece of testing data has 

a large deviation from the normal EMG data, it will be flagged 

as a disturbance. The detector parameters can be calculated in 

the training procedure automatically. No more tuning step is 

required in the testing phase. More details of the signal fault 

detection algorithm can be found in [25]. 

Fast Classifier Retraining Process: For EMG PR-based 

NMIs, the original classifier will no longer be applicable 

when one or more EMG signals are removed from the system 

[5], [25]. The classifier needs to be retrained to recover the 

PR performance. The response time of the retraining 

algorithm is very critical to the design of real-time SFTM 

because the training process for HD EMG PR is time 

consuming due to the large amount of data produced. In our 

prior work, after examining the details of the linear 

discriminant analysis (LDA) algorithm, a computationally 

efficient classification algorithm that is commonly used in 

real-time NMIs, we have found that, by making efficient use 

of existing information obtained from the original training 

procedure, the LDA-based retraining procedure can be 

significantly simplified [25], [26]. The fast retraining 

algorithm can dramatically accelerates the retraining speed 

and is much more memory efficient compared to a full 

retraining process. 

B. Feature Engineering 

Both commonly used EMG features including TD features 

and AR coefficients and our newly developed spatial-

temporal HD EMG AFs have been evaluated in this study.  

TD Features: The Hudgins' TD features have been widely 

used in real-time EMG PR due to their low computational 

complexity and high accuracy [27]. The TD features used in 

this work include mean absolute value (MAV), root mean 

square (RMS), wavelength (W), zero crossings (Z), and sign 

slope changes (T).  

AR Features: AR features are also commonly used because 

of their effectiveness in EMG PR [28]. In this study, the AR 

coefficients (denoted as ARk, k∈ [0,5]) and AR error (ARe) of 

a sixth-order AR model have been included in our evaluation.  

Adjacent Features: AFs have been developed in our prior 

work to analyze the intensity and structure of the HD EMG 

signals and the spatial relations between adjacent electrodes 

 
Figure 1. Overall system architecture of the HD EMG pattern 

recognition based NMI which consists of standard EMG pattern 

recognition modules coupling with the SFTM. 
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[17]. The HD EMG signals are the result of motor unit action 

potentials (MUAP) propagating through the muscle tissues. 

Between adjacent channels, similarities in signal 

characteristics can be observed. The AFs approximate and 

quantify these characteristics by calculating the Mean 

Absolute Difference (MAD) between adjacent signals in the 

transverse (T) and longitudinal (L) directions. To calculate the 

AF, the transverse and longitudinal measured electrical signals 

(MESs) are shifted forward and backward by dn samples, and 

then compared to the reference MES. The MADs in the 

longitudinal and transverse direction of an electrode at the i, j 

location of the HD EMG grid are calculated as 

𝑀𝐴𝐷𝐿,𝑑𝑛[𝑖, 𝑗] =
∑ |𝑋𝑖,𝑗[𝑛]−𝑋𝑖+1,𝑗[𝑛+𝑑𝑛]|
𝑤𝑙
𝑛=1

𝑤𝑙
   and 

𝑀𝐴𝐷𝑇,𝑑𝑛[𝑖, 𝑗] =
∑ |𝑋𝑖,𝑗[𝑛]−𝑋𝑖,𝑗+1[𝑛+𝑑𝑛]|
𝑤𝑙
𝑛=1

𝑤𝑙
,  

respectively, where n is the sample within the analysis window, 

wl is the total number of samples in a window, dn is the 

number of samples to shift by, and Xi,j is the normalized MES 

at the i, j location of the grid. In this study, six AFs have been 

evaluated including MADL,-1, MADT,-1, MADL,0, MADT,0, 

MADL,1, and MADT,1 because of their good performance in HD 

EMG PR based on our previous results [17]. 

Feature Engineering: A parameter tuning framework has 

been designed to optimize and identify the top performing 

feature sets. Specifically, three different parameter searches 

have been done in our experiments to investigate the 

following feature spaces: 

 AFs only 

 Combination of TD features and AR features 

 Combination of AFs, TD features, and AR features 

For each parameter search, up to three features are selected 

from each type of features (i.e., AFs, TD features, and AR 

features) to save time on tuning and to avoid computationally 

complex models. 

C. System Implementation  

The proposed real-time HD EMG SFTM was implemented 

based on Python 3 due to its low developmental complexity, 

high performance, high adaptability, portability, and library 

support. Key libraries including Numba and Intel oneAPI 

Math Kernel Library (MKL) were used in our implementation. 

Numba is a derivative of the NumPy scientific computing 

library that offers a Just-In-Time (JIT) compiler that translates 

a subset of Python code into super-fast machine code. The 

Intel oneAPI MKL accelerates linear algebra operations and 

routines. An open-source hyper-parameter optimization 

framework Hyperopt was used to develop our parameter 

tuning algorithm for the feature engineering phase [29].  

D. Experiments  

This study is conducted with Institutional Review Board 
(IRB) approval at San Francisco State University (SFSU) and 
informed consent of subjects. One male able-bodied subject 
was recruited. Data acquisition was conducted with the OT 
Bioelettronica’s Quattrocento amplifier at 2560 samples per 
second with three surface EMG electrode grids (placed on the 

subject’s dominate forearm) with 10mm spacing in an 8 by 8 
arrangement, resulting in 192 channels.  

Seven hand and wrist gestures including no movement, 
wrist supination, wrist pronation, hand close, hand open, wrist 
flexion, and wrist extension were performed in our 
experiments. The proposed HD EMG SFTM is not restricted 
to specific types of disturbances. To evaluate the performance 
of the SFTM, two common disturbances of EMG recordings 
have been investigated in this study: Contact Artifacts (CA) 
and Loose Contacts (LC) [21], [24]. In the CA trials, the seven 
gestures were made with a pen tapping on approximately the 
last 3 dozen electrodes (156-192) at a rate of 4-5 Hz. The exact 
electrodes affected vary from strike to strike. The LC 
disturbances were introduced with the last two rows of one 8x8 
EMG electrode grid peeled back, and a towel placed between 
the electrodes and the skin while gestures were performed. 
Figures 2 and 3 show two representative trials of HD EMG 
signals contaminated by CA and LC, respectively. 

In our experiments, three datasets were collected, including 
one normal EMG set, one set contaminated by CA, and one set 
contaminated by LC. For each dataset, the subject performed 
the seven gestures in sequence five times. Each gesture was 
performed for five seconds with short rest periods in-between. 
The sampled data were segmented into overlapped analysis 
windows with 100 ms length and 50 ms increment. 

Evaluation of the effectiveness of the SFTM was based on 
the resulting accuracies from classification. To evaluate the 

 
Figure 2. A representative trial showing HD EMG signals 

contaminated by CA 

 
Figure 3. A representative trial showing HD EMG signals 

contaminated by LC 
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effect of the SFTM on EMG signals without disturbances, the 
normal EMG dataset was divided into five groups with each 
group containing one repetition of each gesture and then a five-
fold cross validation was performed to calculate the averaged 
classification accuracy with and without the SFTM. For the 
CA and LC datasets, the normal dataset was used as the 
training set to create the initial LDA classifier and then the 
classification accuracies for the CA and LC datasets with and 
without the SFTM were calculated and compared. 

The Python 3 based implementation of the HD EMG SFTM 
was running on a Huawei Matebook X Pro with an Intel i7-
8550U CPU, 16GB of memory, and Windows 10 Home 
operating system. 

III. RESULTS AND DISCUSSION 

Table I shows the classification accuracies of the HD EMG 
PR system with and without the SFTM on the CA and LC 
datasets. Six selected feature sets with highest overall 
recovered classification accuracies are included in this table. 
The positive effects of the SFTM are evident, increasing the 
classification accuracies by 6%-22%. All selected feature sets 
can recover the EMR PR performance to over 90% thanks to 
the SFTM. The benefit is the greatest when AFs are used 
where the recovered classification accuracies can be as high as 
97%. This further proves the effectiveness and robustness of 
AFs in HD EMG PR. The computational requirements of AFs 

are comparable with those of TD features, which makes AFs 
effective features for real-time HD EMG PR systems.  

Table II shows the effect of the SFTM on the normal 
dataset with the six selected feature sets included in Table I. 
The results show that, for normal EMG data without 
disturbances, the SFTM only has slight effect on the PR 
performance. Only two feature combinations in Table II yield 
slightly lower (<0.1%) classification accuracies when SFTM 
is applied, which might be due to false detections from the 
signal fault detectors. Overall, the SFTM is effective in 
recovering HD EMG PR performance from disturbances and 
still maintains the PR performance when there is no 
disturbance. 

Table III summarizes the CPU runtime of the Python-
based SFTM implementation with various configurations 
based on two variables: 1) the number of signals detected as 
abnormal and 2) the number of features extracted for EMG PR. 
The SFTM process can be divided into a few major steps 
including feature normalization, feature reloading, fast 
retraining, and classification. The results show that the total 
SFTM CPU runtime for all configurations is less than 100 ms 
except for one configuration (2 abnormal signals and 9 
extracted features). When six or fewer features are used, the 
CPU runtime for all configurations is less than 50 ms. This 
demonstrates the computational efficiency of the proposed 
SFTM and its promise in real-time HD EMG PR applications. 
With the assistance of GPU and other advanced computing 
techniques, the processing speed of the SFTM can be further 
accelerated.  

IV. CONCLUSION 

This project designed and validated an HD EMG PR based 

NMI which seamlessly integrates HD EMG PR with an 

SFTM that detects signal anomaly, retrains the classifier, and 

performs reliable PR in real-time. Three types of HD EMG 

features (TD features, AR features, and AFs) were evaluated 

on three datasets including a normal set and two contaminated 

sets with CA and LC, respectively. The SFTM was able to 

recover the classification accuracies by 6%-22%. The benefit 

of the SFTM was the greatest when AFs were used, which 

further proved the effectiveness and robustness of AFs in HD 

TABLE II. CLASSIFICATION ACCURACY OF THE HD EMG PR SYSTEM WITH 

AND WITHOUT THE SFTM ON NORMAL DATASETS 

Features 

 

Normal set w/o 

SFTM (%) 

Normal set w 

SFTM (%) 

AF: MADL,-1, MADL,0, MADL,1 100.00 100.00 

TD: Z, T  

AR: AR3, AR5   

AF: MADL,-1, MADL,0 100.00 99.90 

AF: MADL,-1, MADL,0 100.00 100.00 

AF: MADL,0, MADL,1 100.00 100.00 

TD: T  

AR: AR2, AR3, AR4   100.00 100.00 

TD: Z, T  

AR: AR2, AR3, AR4  99.95 99.90 

 

TABLE I. CLASSIFICATION ACCURACY OF THE HD EMG PR SYSTEM WITH 

AND WITHOUT THE SFTM ON CA AND LC DATASETS 

Features 

 

CA w/o 

SFTM 

(%) 

CA w 

SFTM 

(%) 

LC w/o 

SFTM 

(%) 

LC w 

SFTM 

(%) 

Total w 

SFTM 

(%) 

AF: MADL,-1, 

MADL,0, MADL,1 84.58 96.16 87.09 99.66 97.91 

TD: Z, T  

AR: AR3, AR5   

AF: MADL,-1,     

MADL,0 86.27 95.74 65.41 99.90 97.82 

AF: MADL,-1, 

MADL,0 79.85 94.29 71.43 99.80 97.04 

AF: MADL,0, 

MADL,1 77.59 93.94 82.41 99.36 96.65 

TD: T  

AR: AR2, AR3, AR4   76.19 84.46 96.34 99.25 91.85 

TD: Z, T  

AR: AR2, AR3, AR4  75.39 82.41 92.18 98.50 90.45 

 

TABLE III. SFTM CPU RUNTIME WITH VARIOUS CONFIGURATIONS  

# of 

abnormal 

Signals  

SFTM CPU runtime (ms) with various number 

of extracted features 

1 

Feature  

2 

Features 

3 

Features 

6 

Features 

9 

Features 

0 2.59 6.22 7.29 16.37 29.13 

2 3.49 10.45 12.94 43.23 120.55 

24 4.23 10.92 11.81 37.20 88.36 

48 3.76 10.62 11.29 36.36 69.86 

96 4.72 9.84 10.48 25.46 47.36 

144 6.30 8.59 9.94 21.87 37.79 

161 4.99 7.01 9.96 21.45 36.47 

190 4.35 6.73 10.69 19.50 33.10 
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EMG PR. A Python-based implementation of the proposed 

HD EMG SFTM was developed and was demonstrated to be 

computationally efficient for real-time performance. These 

results have demonstrated the feasibility of a robust real-time 

HD EMG PR-based NMI. 
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