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Abstract—The ability to assess balance is essential to de-
termine a patients ability to mitigate any risk of falling. While
current assessment tools exist, they either have limitations in
that there is no quantitative data recorded, or that they are
impractical for general use in clinical settings. In this work,
we aim at assessing balance using single-camera videos. In
particular, the proposed method uses OpenPose to calculate
the Center of Mass and Center of Pressure trajectories. To
determine the validity of this approach, estimates obtained in
an experimental study were compared to recordings obtained
through the use of 3D motion capture and force plate. Our
results indicate that this inexpensive, easy to use, and portable
alternative has the potential to act as a suitable replacement
to assess balance in clinical settings.

Index Terms—Balance assessment, Center of pressure,
Markerless motion capture, Openpose

I. Introduction

Past infanthood, balancing becomes second nature to
humans, requiring little to no direct thought when per-
forming the act of balancing. However in reality, balance
control is a complex process involving the coordinated
action of biomechanical, sensory, motor and central ner-
vous system components. These control strategies result
premarily in the action of the ankle and hip joints in the
anteroposterior (AP) and mediolateral (ML) planes to
control standing balance. Among the variables involved in
the study of balance, the Center of Mass (CoM) and the
Center of Pressure (CoP) are the most used parameters,
since their dynamics may represent actions required to
maintain balance, for instance after perturbations [1].

Balance disorders are primarily found amongst the
older population, with studies indicating a high incidence
of falls in those aged over 65 years [2]. Nevertheless,
problems also occur in the younger population due to
multiple factors, such as physical injuries, diseases or
specific neurological conditions.

Methods to evaluate balance are important to address
the possible risks of falls and to mitigate fall-related
injuries. Widely used protocols involve the Berg Balance
Scale [3]. Among other aspects, these simple tests are
popular due to their ability to assess balance without the
need for specialized equipment. Nonetheless, sensor-based
methods could provide further insights into subject-
specific deficits or compensation strategies, while also
enabling automatic computation of balance metrics. Fur-
thermore, such systems may provide real-time feedback
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for rehabilitation protocols targeting balance, for instance
using games [4].
Candidate measurement technologies to enable quanti-

tative balance assessment range from conventional optical
motion capture technology to wearable sensors. Consid-
ering use in clinical settings, price range and ease-of-use
may favour technologies such as sensors that combine
color and per-pixel depth information (i.e. RGB-D sen-
sors, such as the Microsoft Kinect) or inertial sensors [5].
One alternative is to employ computer vision libraries
used for human 2D estimation, such as OpenPose [6]
and DeepLabCut [7]. In particular, Openpose has the
ability to estimate 25 human key points from single-
camera videos, which may then be used to compute
balance-related indexes. The long-term goal in this re-
search effort involves using this information to develop an
non-invasive, fast, and portable method to assess human
balance, particularly considering the ubiquity of cameras
in modern society.
The use of Openpose or similar software tools for clin-

ical applications has been proposed in previous studies,
particularly for gait analysis [8], [9], [10]. To the best of
our knowledge, there has been no use of markerless video-
based skeleton tracking tools, such as OpenPose, to assess
human balance.
In this work, the main goal is to develop a system that

employs a single-camera video to estimate CoM and CoP
horizontal trajectories during AP and ML sway using
OpenPose. The results obtained in a pilot observational
study are compared to data acquired using consolidated
measurement systems, notably an optical motion capture
system and a force plate.

II. Materials and Methods

A. Subjects and protocol

Three subjects (2 females and 1 male, 171 ± 13 cm,
70 ± 16 kg) without any known balance deficit were
recruited for this study. The research was approved by
the Ethics Committee at the University of Queensland,
in accordance with the Helsinki Declaration, and all
volunteers signed an informed consent form.
All subjects performed a total of four tests, two in each

position (AP and ML). Participants were instructed to
sway, pivoting from the ankles with minimal hip flexion
and arms resting on either side of the body. They were
instructed to oscillate twice to both sides until a point
close to their stability limit was reached. This specific
movement was chosen in this preliminary evaluation,
since the relation between CoM and CoP trajectories may
be a useful tool to assess balance [1].

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 7605



Fig. 1: OpenPose output of a participant starting AP
sway. The blue circle illustrate the estimated CoM, while
the red arrow near the feet depict the calculated CoP.

Movement was recorded at 120 Hz using an optical
motion capture system (Optitrack Flex 13, USA) and a
single force plate (Bertec 4060-07, USA). CoM estimation
was based on markers placed at the left and right an-
terior superior iliac spine (ASIS) and posterior superior
iliac spine (PSIS) positions. Simultaneously, videos were
recorded for OpenPose analysis (Nikon D3200 with AF-S
DX Nikkor 18-55mm f3.5-5.6G, Japan) at 60 fps. The
camera was positioned orthogonally to the movement
at an appropriate distance capture the movement1. The
experimental setup is depicted in Fig. 1, along with joint
estimates provided by OpenPose.

B. OpenPose data processing

Processing of OpenPose data is performed considering
minimal input from the user is required. For that reason,
the method includes additional steps that evaluate the
integrity and quality of estimated key points. Note that
for other applications, further pre-processing stages may
be required, such as when multiple persons are tracked
by OpenPose.

1) Occlusion of body parts: Since a single camera is
only able perceive two dimensions worth of data, it is
possible for certain body parts to remain obscured in the
the cameras field of view. In the current protocol, this
does not occur for ML trials, but in AP sway the key
points of only one side of the body may be found.

Therefore before any analysis of balance was con-
ducted, the script first compares the left and right coun-

1There is no need to employ a fixed distance to the user, as
described in Sec. II-B.

terparts for each limb position. If both counterparts are
found then the position of the CoM is computed using
Eq. 1. However, if only one of the two parts are found,
it is assumed that the body remains symmetrical along
the sagittal plane, hence any obscured body parts should
have the same (x, y) coordinate as its visible counterpart.
2) Unit conversion: In some applications, such as [8],

authors have decided to calculate measures of clinical
interest based on information provided directly by Open-
Pose. One alternative is employing a method to allow
for conversion between pixels and meters, particularly if
comparison with other measurement systems is desired.
Two methods have been evaluated in this work: placing
an object of known length near the subject, or using as
an input the subjects height. We have finally chosen the
latter in order to simplify the experimental setup.
This choice has led to an additional problem, since

the OpenPose model used to locate key points has a
maximum height located at the nose and not the top of
the head. To rectify this, an approximate offset between
the top of the head is used, where the average vertical
displacement between the root of the nose (selllion) to
the top of the head were taken from [11] (10.77 and 10.06
cm for males and females, respectively). As both height
and gender were input as parameters in the method, unit
conversion may the be performed at the subjects depth
in the frame.
3) Smoothing: Pilot testing has suggested that noise

present in OpenPose estimates were negatively affecting
the calculated CoM and CoP positions. As double differ-
entiation is required for the computation of CoP position,
the issue is accentuated in this case.
In this work, smoothing of measured data was per-

formed using the Satvizky-Golay filter [12]. It may be
seen as a weighted moving average filter which is gener-
ated by using linear least squares to fit subsets of adjacent
data points with a nth-order polynomial to obtain the
corresponding filter coefficients.
4) Center of Mass: The CoM position is calculated

using the segmentation method, where the CoM is esti-
mated by summing the moments of masses of individ-
ual body segments. Considering the percentage of body
segment weight with respect to the full body weight
(obtained in [13]), the CoM position may be computed
as follows:

CoM =

n∑
i=1

miCoM i, (1)

where CoMi are the (x, y) coordinates of individual body
segments from the top left corner of the frame, mi refers
to the percentage of each body segment weight, and n is
the number of individual body segments.
As the majority of the key points in which OpenPose

generates are of joint positions, there are certain body
segments from [13] that may not be directly located via
the OpenPose output. Instead specific combinations of
key points may be utilized to interpolate an approximate
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body segment position dependent on the orientation of
the camera. For example, the right shank position may be
approximated by averaging the positions of the right knee
and right ankle. Also, within the model used in OpenPose
the hand is not tracked. Both these limitations further
increase errors that are inherent of the segmentation
method.

5) Center of Pressure: The calculation of CoP position
is based on the inverted pendulum model. In this ankle-
centered model, the body experiences two forces in the
vertical direction, one due to gravity going downwards
applied at the CoM and a resultant force to counteract
the previous force, applied at the CoP [1]. The model
may be given by

CoP = (CoMx −Ox) +
Iα

Mg
, (2)

where CoP refers to the centre of pressure given with
respect to the pendulum origin O, g refers to gravity,
I is the mass moment of inertia, and α is the angular
acceleration of the inverted pendulum. The total body
mass M is one of the inputs required by this method.

C. Data Analysis

The results are then utilized to compute metrics used
to provide a preliminary comparison between OpenPose-
generated CoM and CoP with respect to estimates pro-
vided by the motion capture systems. Two metrics are
used to illustrate CoM and CoP tracking errors, namely
the Pearson Correlation Coefficient (r) and the Root
Mean Squared Error (RMSE).

III. Results and Discussion

Tables I and II illustrate the obtained results, listing
both r and RMSE computed for each trial. In addition
to the tables, Figs. 2 and 3 depict sample CoM and CoP
trajectories, respectively, calculated for Subject C using
both measurement systems. Both figures refer to the same
trial, thus depicting that the two variables are in anti-
phase during sway.

Regarding estimates obtained using OpenPose, one
may observe (e.g. in Fig. 2) that the horizontal displace-
ment of the CoM is symmetric for ML sway, while not the
case for the AP movement. Considering the instructions
given to participants, which explicitly mentioned avoiding
movement of the foot, AP sway resulted in positive
displacements only for all participants.

The results outlined in Tab. I and II provide average
values of 0.9928 and 1.3151 for r and RMSE, respec-
tively. In this work, we have not evaluated the method
performance for balance assessment. Nevertheless, we are
able to discuss some limitations of the proposed method.
For instance, small oscillations on CoP displacement were
undetected by the OpenPose method, which may be due
to the smoothing applied, but also other features (e.g.
camera sampling rate, resolution). Another issue involves
how OpenPose errors propagate to final estimates. For
instance, it may be observed in Fig. 1 that both feet

TABLE I: CoM position estimated using optical motion
capture data and the proposed OpenPose-based method.

Subject Trial
ML AP

r RMSE (cm) r RMSE (cm)

A
1 0.9980 1.7152 0.9863 0.7637
2 0.9990 1.1915 0.9898 0.6110

B
1 0.9984 0.7706 0.9923 1.5440
2 0.9983 1.0665 0.9968 0.9362

C
1 0.9996 0.9479 0.9966 0.8086
2 0.9996 0.9479 0.9928 0.8171

Average 0.9988 1.1066 0.9924 0.9134

TABLE II: CoP position estimated using a force plate
and the proposed OpenPose-based method.

Subject Trial
ML AP

r RMSE (cm) r RMSE (cm)

A
1 0.9941 1.8120 0.9847 1.3639
2 0.9941 1.8120 0.9756 1.8840

B
1 0.9956 1.5283 0.9877 1.5486
2 0.9949 1.8811 0.9881 1.2359

C
1 0.9913 1.7762 0.9901 1.1277
2 0.9902 1.8336 0.9919 1.6386

Average 0.9934 1.7739 0.9864 1.4665

estimates are not perfectly aligned, which eventually led
to errors in the upright position (e.g. Figs. 2 and 3).

IV. Conclusions

Availability of an inexpensive and uncomplicated tool
to assess balance could improve diagnosis and treatment
of balance disorders. Hence, in this work we have devel-
oped a method to estimated CoM and CoP trajectories
using single-camera videos. Preliminary evaluation was
performed on young adults swaying on both AP and
ML planes. The results obtained using the proposed
method were compared to standard measurement modal-
ities (motion capture system and force plate), and the
corresponding calculated r and RMSE have provided an
early evidence of performance.
Future works involve both the application of methods

presented here in a broader study including younger and
older adults, as well as the integration of online models
of oscillatory movement [14] and automatic simultaneous
segmentation and quantification, both methods previ-
ously developed by the group [15].
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and A. P. L. Bó, “Balance measurement system based on the
center of mass computation using kinect,” in XXIII Brazilian
Congress of Biomedical Engineering, 2012.

7607



(a) (b)

Fig. 2: CoM horizontal trajectories obtained for Subject C when performing (a) AP and (b) ML sway.

(a) (b)

Fig. 3: CoP estimates obtained for Subject C when performing (a) AP and (b) ML sway.
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