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Abstract— In a brain, it is considered that the synchronous
activity of neurons expresses a representation of information.
Hebb named the synchronous active group of neurons "Cell
Assembly". In this study, we hypothesized that a repeatedly
expressed pattern is a cell assembly representing a certain kind
of information and attempted to extract such "Cell Assembly"
by X-means clustering based on spatiotemporal continuity of
spontaneous spikes. Moreover, we divided cell assemblies into
classes consist of similar types of cell assemblies, using the
indiscernibility-based clustering, "rough clustering". As the
result, it showed that cell assemblies did not have a large
temporal extent, but a spatial extent. Additionally, we analyzed
the neuronal network activity as the stochastic process whose
state space is the set of cell assembly, finding out that similar
patterns appear consecutively. According to these results,
information processing in the neuronal network is suggested to
be the hierarchical process. Finally, the clustering method was
adopted for spontaneous activity and the evoked responses. It
is suggested that spontaneous activities and evoked responses
are not completely independent, but share resemble activities.

I. INTRODUCTION

In a brain, it is considered that a set of synchronous activ-
ity of multiple neurons, called "Cell Assembly" by Hebb [1],
represents a certain kind of information. Therefore, defining
and analyzing the activity pattern of neuronal networks is
important for understanding the information processing in a
brain. In studies with the multi-electrodes-array in which
spike trains were analyzed in fixed time-window-width,
the feature vector whose elements were numbers of spikes
in each time-window was considered to express a certain
activity pattern. Similarly, a method to obtain cell assemblies
based on synchronism or correlation between channels also
divided spike trains. Otherwise, it is supposed that each
active pattern has various durations due to the difference in
the number of cells or synaptic delays, thus these methods
with fixed time-window-width may not be able to extract
appropriate activity patterns. In this study, we attempted to
obtain cell assemblies, using X-means clustering based on
spatiotemporal continuity. Note that "cell assembly" does
not mean a population of cells, but the set of spikes, in
this study. Moreover, to classify cell assemblies appearing
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repeatedly over time into a group (cell assembly class), we
also applied another clustering to extracted cell assemblies.
Using obtained cell assembly classes, we analyzed the
dynamics of neuronal network activities.

We also analyzed the relationship between spontaneous
activity and the responses evoked by stimulation. Recent
research showed that the evoked responses depended on the
interval between the latest ongoing network burst (NB) and
stimulation timing [2]. Pasquale et al. also indicated that
the leading channels of spontaneous and evoked NB were
similar [3]. We attempted to elucidate the similarity between
spontaneous and evoked activity patterns as cell assembly
classes.

II. MATERIALS AND METHODS
A. A neuronal network in a dissociated culture

This study was conducted by the procedures for animal
experiments in accordance with the "Kwansei Gakuin Uni-
versity Animal Experiment Management Regulations" and
with the approval of the Animal Experiment Committee. In
this study, we used cultured neuronal networks of hippocam-
pal cells of fetal rats on embryonic day 18 (E18) from Wistar
Rat (Jcl: Wistar, CLEA Japan).

The hippocampal region of fetal rats excised from the
cerebrum was decanted three times with glucose-containing
PBS−. Trypsin-EDTA (Thermo Fisher Scientific) was added
and the cells were shaken for 15 min in a water bath at
37 ° C. After trypsin treatment, cells were seeded in the
cloning ring placed on each MED probe at a density of
7800 cells/mm2. An extracellular multipoint measurement
system (MED64 system, Alpha MED Scientific) was used
to analyze the electrical activity of the neuronal network
[4]. The MED64 system consists of a MED connector, a
head amplifier, and a MED probe. The electrical activity
measured by the microelectrodes on the MED probe flows
through the MED connector to the head amplifier and is
amplified. The electrical signals are then digitized with a
sampling frequency of 20 kHz and a quantum number of
12 bits, and stored on a hard disk. The digital signals are
analyzed using Spike Recorder (SPR), a program devel-
oped in our laboratory. Activity spikes were detected from
the extracellular potential data measured by the MED64
system and the SPR program, using the Spike Counter
(SPC) program also developed in our laboratory. Spikes are
detected when the amplitude of electric potential exceeds
a certain threshold empirically determined from the mean
and standard deviation of the electric signals. In this study,
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we recorded the spontaneous activity of the neuronal net-
work for 10 minutes. The evoked responses were recorded
for 60 minutes. The two stimulating electrodes detected
active spontaneous activity were selected. In the neuronal
networks, stimulation at short time intervals is suggested
to cause hysteresis, in which the previous inputs influence
the following activities [5]. Therefore, we stimulated at
an interval of 10 s, which is considered not to occur the
hysteresis.

B. Extracting Cell Assemblies
We translated the time stamp data obtained from cultured

neuronal networks to three-dimensional feature vectors, and
extracted cell assemblies by X-means clustering applied on
the three-dimensional space. Because applying the clustering
for entire data was unable to extract adequate patterns in
shortly expected duration, we previously divided data into
some batches. The optimal dividing time dt∗ was decided
by

dt∗ = min{dti |ci − ci−1 ≤ 0, ci+1 − ci ≥ 0},

where ci is assumed to the number of cell assem-
blies extracted in dti assumed to a certain width (dti ∈
{25,50, ...500}) of a fixed time window.

C. Classification Cell Assemblies
1) Center Clustering: We assumed similar patterns of

cell assemblies had the similar center of gravity, and cal-
culated center of gravity of each cell assemblies. Projecting
the vectors corresponding to the center of gravity to two-
dimensional space, X-means clustering was applied to these
projected centers of gravity. Extracted clusters were classes
including resemble patterns of cell assemblies.

2) Clustering applied to point sequences for the cell
assembly: We classify extracted cell assemblies with the
novel criterion. Each cell assembly was expressed as a
point sequence of the active-channel coordinates of spikes
included in the cell assembly. The dissimilarity dc(x,y)
between cell assemblies x, y is defined by

dc(x,y) := min
y′∈Y

(
n

∑
i=1

du(xi,y′i))+
m−n

m

where du is euclidean distance, n and m, is the length of
x and y, respectively, Y is the set of subsequences of y
with the length of n. dc certainly satisfies the "identity of
indiscernibles", "symmetry", and "non-negativity", but does
not satisfy the triangle inequality, therefore it is semimetric
in the sequence space. We use the indiscernibility-based
clustering, called "rough clustering" [6]. It is the clustering
method that constructs the residue classes for each data
by similarity, classifying the data through the commonality
among all residue classes. The algorithm of rough clustering
is shown below.

1) Let X and D be set {x1,x2, ...xn}(n ∈ N) and the
dissimilarity matrix, respectively.

2) Divide X by the equivalence relations Ri(i= 1,2, ....n).

X/Ri := {Pi,X −Pi}

Pi := {x j ∈ X |Di, j ≤ T hdi}

3) Calculate the indiscernibility matrix γ .

γ (xi,x j) :=
∑n

k=1 δ indis
k (xi,x j)

∑n
k=1 δ indis

k (xi,x j)+∑n
k=1 δ dis

k (xi,x j)

δ indis
k (xi,x j) :=

{
1, xi,x j,xk ∈ Pk

0, otherwise

δ dis
k (xi,x j) :=


1, xi ∈ Pk,x j ∈ X −Pk or

xi ∈ X −Pk, x j ∈ Pk

0, otherwise

4) Divide X by new equivalence relations R′
i.

X/R′
i := {P′

i ,X −P′
i }

P′
i := {x j ∈ X |γ (xi,x j)≥ th}

5) Iterate the refinement process 3 and 4 until the indis-
cernibility matrix become stable, using the same th

Note that T hdi and th are the thresholds for dissimilarity
and indiscernibility, respectively. T hi is decided as follows.

1) Let Di be sorted {Di, j} j=1,2,...n.
2) Calculating D′

i = {Di, j −Di, j−1} j=2,3,...n, Let index be
min{argminD′

i}
3) Let T hdi be the average of Di,index and Di,index+1.
th is decided arbitrarily. Large th allows tight clustering,

while small th allows loose clustering. In this study, we
applied the rough clustering to the set of cell assemblies,
using dissimilarity dc.

3) Extracting Exceedingly Similar Cell Assemblies:
It was unable to adequately extract similar patterns using
any clustering method, therefore we attempted to classify
the data into classes constructed by exceedingly similar
cell assemblies. We obtained the same cell assemblies as
sequences, applying the rough clustering with high th to the
set of patterns that appeared more than a certain number.
Thus exceedingly tight clustering was achieved by allowing
the cell assemblies with only no or a small number of firing
electrode channels to escape detection.

D. Analyzing Neuronal Activity As Stochastic Processes
A cultured neuronal network was expressed as the

stochastic process whose state space is the set of cell
assembly classes, defined by analyzing the state transition
probability between two cell assembly classes. We analyzed
the probability distribution of P(Xn+1 |Xn) where X is the
stochastic process (Xn),(Xn ∈ S), and S is the set of cell
assembly classes. Moreover, the cultured neuronal network
was expressed as the stochastic process whose state space
is the set of cell assemblies, defined by analyzing the state
transition distance between two cell assemblies each transi-
tion step. We also analyzed the distribution of dc(X ′

n,X
′
n+1)

where X′ is the stochastic process (X ′
n), (X ′

n ∈ S′), and S′ is
the set of cell assemblies.
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E. Similarity between Spontaneous Activity and Evoked
Responses

To investigate the similarity between spontaneous activity
and evoked responses in the neuronal network, we adapted
the method described in II-C.3 to cell assemblies extracted
from spontaneous activity and cell assemblies extracted from
responses evoked by a stimulation electrode was stimulated.

III. RESULTS AND DISCUSSIONS
A. The Spatial-temporal Characteristics of Cell Assemblies

The optimal-dividing-time-window decided by method
II-B was 210.86 ± 108.87ms (mean ± SD, N=31). We
analyzed the duration, the number of spikes, and the di-
ameter of cell assemblies for each culture to observe the
spatial-temporal characteristics (Fig. 1). The diameter is
the maximum value of the distance between any channels
included in the cell assembly. The mean of the duration,
the number of spikes, and the diameter were 24.40±15.93
ms (mean± SD, N=31), 7.88± 3.11(mean ± SD, N=31),
and 5.92 ± 1.25 (mean ± SD, N=31), respectively. The
percentage of the average duration to optimal dividing time
window was 0.068±0.039 (mean ± SD, N=31). It suggested
that cell assemblies didn’t have temporal extent, but had
spatial extent.

B. Classification of Cell Assemblies
X-means clustering was applied to the 2D-projected spa-

tial distribution of the gravity centers of extracted cell
assemblies to obtain cell assembly classes (Fig. 2). Con-
sequently, clear classes were not obtained even though the
partly similar cell assembly classes were obtained. That
is because similar cell assemblies have similar centers
of gravity, however, cell assemblies with a similar center
are not necessarily similar to each other. The clustering

(a)
(b)

(c)

Fig. 1: (a) An example of the distribution of the duration of
cell assemblies. (b) An example of the distribution of the
number of spikes in cell assemblies.(c) An example of the
distribution of the diameter of cell assemblies (E18DIV41).

(a) (b)

Fig. 2: (a) An example of the distribution of gravity centers
of extracted cell assemblies. (b)Example of extracted cell
assemblies extracted by applying clustering to 2D-projected
gravity centers. Each color shows an individual cell assem-
bly (E18DIV64).

method with gravity centers is suggested as the suitable
one for rough classification, in contrast, it is not effective
for extracting clear cell assembly classes. The existence of
different activity patterns even when the centers are similar
indicates that each neuron is involved in multiple types of
information processing.

To obtain the more clear cell assembly classes, rough
clustering with semimetric dc was applied to the set of cell
assemblies as point sequences. The set of cell assemblies
was previously divided by the clustering by centers to reduce
the amount of calculation. However, adequate clusters were
not obtained even with this method (Fig. 3). Therefore,
applying tight rough clustering to the set of cell assemblies
appearing more than three times, we attempted to obtain
cell assembly classes composed of exceedingly similar cell
assemblies. We adjusted th to 0.9 empirically. As a result,
certain classes of patterns with few different components
(active electrode channels) were extracted in cell assembly
classes (Fig. 4a). To evaluate this clustering method, we
calculated two values. The two values, di and de are defined
as below.

di =
1

n(n−1) ∑
x1∈Xi

∑
x2∈Xi

dc (x1,x2)

Fig. 3: An example of cell assemblies extracted by the rough
clustering. Each color shows an individual cell assembly
(E18DIV64).
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(a) (b)

Fig. 4: (a) An example of extracted cell assemblies by tight-
rough-clustering. (b) Averaged values of di (left) and de
(right) (E18DIV64).

,

de =
1

nm ∑
x1∈Xi

∑
x2∈X\Xi

dc (x1,x2)

, where X is the set of cell assemblies, n and m are the
number of cell assemblies in Xi and X\Xi, respectively. As
the result, di and di were 0.13±0.15 (mean ± SD, N=31)
and 8.07±3.22 (mean ± SD, N=31), respectively (Fig. 4b).
The clear difference between these values suggested that
tight-rough-clustering was effective to extract exceedingly
similar cell assemblies.

C. Dynamics of Cell Assemblies

We analyzed the cultured neuronal activities as the
stochastic process whose state space is the cell assembly
classes. The average transition probability was 0.257 ±
0.112(mean ± SD, N=31). Moreover, the average transition
distance was 9.82±6.11 (mean ± SD, N=31) (Fig. 5b). The
transition distance was smaller than the maximum distance,
indicating that transitions to similar patterns were common.
Time domains for consequent appearance of similar patterns
were frequently observed suggested a possibility that the
hierarchical information processing is performed in which
the consecutive patterns constitute a new pattern.

(a) (b)

Fig. 5: (a) An example of the distribution of the state
transition probabilities between cell assemblies classes. (b)
An example of the distribution of the transition distances
(E18DIV64).

Fig. 6: An example of the number of spontaneous and
evoked cell assemblies in each cluster (E18DIV71).

D. Similarity between Spontaneous Activity and Evoked
Responses

The cell assemblies obtained from spontaneous responses
and those obtained from evoked responses were classified.
The evoked activity was defined as the activity within 100
ms after the stimulation. As a result, there were clusters that
included both spontaneous responses and evoked responses
(Fig. 6). The result indicates that spontaneous activities and
evoked responses are not completely independent, but are
share resemble activities.

IV. CONCLUSION
We divided cell assemblies into groups consist of ex-

ceedingly similar cell assemblies by the indiscernibility-
based clustering, called "rough clustering", and analyzed
their characteristic. As the result, certain classes of patterns
with few different components (active electrode channels)
were extracted in cell assembly classes. In addition, we
analyzed activities as the stochastic process whose state
space is the cell assemblies classes. The transition distance
was smaller than the maximum distance, indicating that
transition to similar patterns was common. Time domains
for the consequent appearance of similar patterns were
observed, suggested the hierarchical information processing
is performed in the cultured neurons.
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