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Abstract— The increasing availability of electronic health

records and administrative data and the adoption of computer-

based technologies in healthcare have significantly focused on

medical informatics. Sepsis is a time-critical condition with high

mortality, yet it is often not identified in a timely fashion.

The early detection and diagnosis of sepsis can increase the

likelihood of survival and improve long-term outcomes for

patients. In this paper, we use SHapley Additive exPlanations

(SHAP) analysis to explore the variables most highly associated

with developing sepsis in patients and evaluating different

supervised learning models for classification. To develop our

predictive models, we used the data collected after the first

and the fifth hour of admission and evaluated the contribution

of different features to the prediction results for both time

intervals. The results of our study show that, while there is a

high level of missing data during the early stages of admission,

this data can be effectively utilized for the early prediction of

sepsis. We also found a high level of inconsistency between

the contributing features at different stages of admission,

which should be considered when developing machine learning

models.

I. INTRODUCTION
Sepsis is a life-threatening response to infection and a

time-critical condition with a high mortality rate worldwide
(⇠ 20% [1]). Yet, it is often not identified in a timely fashion
[2]. It is the most common cause of admission to an intensive
care unit (ICU) and the most common cause of death in
the ICU [3]. Additionally, the risk of developing sepsis
while staying in the ICU for any reason is incredibly high;
in one study analyzing 170 post-surgical patients treated
in the ICU, 83 (49%) developed sepsis within the 28-day
monitoring period [4]. There are also significant long-term
side effects associated with sepsis development even if the
patient recovers and is discharged from the ICU [5]–[7].
While the markers of mortality risk post-sepsis development
are relatively well-known [8], the more significant challenge
and more clinically relevant problem are to determine how
to detect patients before sepsis development. The importance
and difficulty of accurate monitoring for this issue are signif-
icant factors in why Grand View Research, Inc. has estimated
that the global sepsis diagnostics market is expected to be
worth $USD 1.18 billion by 2027 [9].

Without timely intervention, sepsis can rapidly lead to
poor outcomes. In the hospital setting, physicians utilize the
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qSOFA score (aka. quickSOFA) [10] to identify patients with
suspected infection who are at a greater risk for a poor
outcome outside the ICU. This score uses three criteria,
altered mental status, fast respiratory rate, and low blood
pressure. Given that qSOFA uses vital signs measurements
and that patients are often in the ICU for hours before
labs and blood-gas measurements are available, predicting
the early diagnosis of sepsis using vital signs could be of
particular utility in a clinical setting. In this paper, we looked
at demographic and physiologic data from ICU patients who
did or did not develop sepsis during their stay to determine if
any key variables could be used for monitoring early warning
signs of sepsis and hopefully prevent its occurrence. We
took two different approaches: (1) classifying sepsis vs. non-
sepsis patients at ICU admission during two different time
intervals, and (2) exploring different features’ contribution
to these predictions. The results of our study show that,
while there is a high level of missing data during the early
stages of admission, this data can be effectively utilized
for the early prediction of sepsis. We also found a high
level of inconsistency between the contributing features at
different stages of admission, which should be considered
when developing machine learning models.

II. METHODOLOGY

A. Dataset and Data Preparation
The Sepsis dataset is a labelled dataset provided by

PhysioNet/Computing in Cardiology Challenge 2019 with
40 columns and 1,552,210 rows combined [11]. There are
43 variables in this dataset, consisting of vital signs and lab-
oratory tests which are time-dependent. Age, gender, patient
care unit, the time between hospital admit and ICU admit,
and length of stay in ICU were the demographics data. There
are 40,336 unique patient identifiers, which we assumed to
represent the number of patients in the population. In the
exploratory data analysis (EDA), a notable finding was the
dataset is highly imbalanced. Records labelled as non-sepsis
is approximately 93% of the total records. The volume of
null values was also evident. Most of the vital signs had 10%
to 15% nulls, except for ‘Temp’ and ‘EtCo2’ had 66% and
97%, respectively. In contrast, laboratory results had 94%
to 99% nulls. This is expected as not all tests are done at
every patient encounter. The population is proportionately
distributed in gender and age groups. Patients in the ICU at
the onset of their sepsis were mostly within the first 6 hours
of ICU stay, which is 54% (1,574 patients).

To address the imbalance problem, we used the Syn-
thetic Minority Over-sampling TEchnique-Nominal Contin-
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(a) Prediction results after hour 2 (b) Prediction results after hour 6

Fig. 1: Classification AUC score for the early prediction of sepsis, using logistic regression

(a) Global feature importance after Hour 2 (b) Global feature importance after Hour 6

Fig. 2: Global contribution of features to the early prediction of sepsis, using logistic regression.

uous (SMOTE-NC) [12] approach to oversample the mi-
nority classes by creating synthetic samples based on their
feature-space. Moreover, given the informativeness of the
presence/absence of predictor variables in clinical datasets,
we incorporated missingness indicators into our models to
address the problem of missing data [13].

B. Model Development and Interpretation
For a timely prediction of sepsis for the cohort of critically

ill patients presented in our dataset, we developed a series
of machine learning models, including logistic regression,
K-nearest neighbour, AdaBoost, XGBoost, EtraTrees, and
Random Forest. As these models cover different learning
architectures (e.g. tree bases, distance-based, and linear),
our learning process will not be biased towards a specific
learning architecture.

Moreover, to interpret the prediction results and explore
how much each feature contributed to the early prediction
of sepsis, we used SHapley Additive exPlanations (SHAP)
analysis [14], [15]. Despite the existing feature analysis
techniques, which mainly compute the global feature impor-
tance, SHAP calculates the local feature importance for every
dataset sample and assigns each feature an importance value

for a particular prediction. Considering that the importance
of a feature may not be consistent across all data points of
a dataset, this approach can address the misinterpretations
associated with the inconsistency problems in other feature
importance techniques.

III. RESULTS

Of the patients who did not arrive in the ICU with sepsis,
1,587 (7.88%) developed sepsis at least one hour into their
stay, with 18,546 (92.12%) being released without ever
developing sepsis. Among patients who developed sepsis,
we found that sepsis occurred more frequently in male
patients (e.g. 61% male and 39% female). Older adults
(� 60) accounted for 61%, with those between 70-80 years
demonstrating the most significant risk. The average ICU
length of stay for patients who developed sepsis was about
2.3 days (i.e. ⇠ 56.3 hours). Most patients were diagnosed
with sepsis within one day, but some patients stayed in ICU
for as long as two weeks.

Among the implemented models in this study, logistic
regression yielded the highest performance in early detection
of sepsis, with the sensitivity of 66% and AUC of 70%
at Hour 2, and sensitivity of 63% and AUC of 65% at
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(a) The waterfall feature importance for random patient
a with no-sepsis outcome

(b) The waterfall feature importance for random patient
b with sepsis outcome

Fig. 3: Waterfall plots presenting the local contribution of features in sepsis prediction. Both of the charts presented in this
figure are recorded after Hour 2 predictions.

Hour 6 (see Figures 1 a-b). Interestingly, results from the
Hour 2 model contained fewer false negatives, representing
a potential benefit of utilizing admission data for early
prediction of sepsis.

A. Influential Features
Using the additive nature of Shapley values, we integrated

all the local feature values for each data point and calculated
the global contribution (I) of each feature. Considering �i

j 2
R as the shapely value of feature j for sample i, we can
calculate the global importance of this feature as:

Ij =
nX

i=1

| �i
j |

Figures 2a and b show the combination of feature impor-
tance (y-axis) and feature effects (coloured points) for the
most influential features for the predictions after Hours 2
and 6, ordered based on their importance. Looking at Figure
2a, we can see that heart rate, systolic BP, gender, WBC,
and calcium are the top five influential features for Hour 2
prediction, and age is not even among the top 11 features.
Highlighted areas in Figure 2b present the features that only
contribute to Hour 6 predictions. Interestingly, age plays a
crucial role in identifying the sepsis outcome after Hour 6
of ICU admission, and heart rate and systolic BP are still
the most influential features. From these results, which are
extendable to the other predictive models developed in this
study, it can be inferred that regardless of the complexity
and the architecture of the predictive models, the features
that should be utilized for sepsis prediction of critically ill
patients are time-dependent and can differ during different
time intervals after ICU admission.

To further investigate the contribution of these features
to the prediction results at the patient level, we visualized
the local version of the plots presented in Figure 2 for
two patients with different outcomes. The waterfall plots
presented in Figure 3 present these features based on the

predictions using Hour 2 data. The red arrows show the
features that contribute to the increase, and the blue arrows
present features that contribute to the decrease in the predic-
tion. The width of each arrow shows the height of its impact.
These plots powerfully show the association between the
prediction results and influential features (i.e. add red values
or subtract blue variables to generate the final prediction for
each patient).

To explore the pattern of influential features, we further
used Shapely values to cluster our dataset based on the
explanation similarity of samples, using hierarchical ag-
glomerative clustering (figure 4). Similar patients (aka. data
points) are grouped on the x-axis. The f(x) curve, as a
line across the top, presents the model predictions for the
instances. The colours on the map correspond to the SHAP
values. The SHAP first clusters all the data points using
hierarchical clustering and then orders the instances on the
x-axis. The center of the heatmap presents the base value,
which is the mean prediction for all instances. From this
figure, we can see that predictions impacted by heart rate also
tend to be impacted by SBP, and they are placed in the same
cluster. The light colours in the middle of the map present the
samples that not swayed far from the base value as the SHAP
values are low. Moreover, while the heatmaps presented
for Hour 2 and Hour 6 predictions show some levels of
similarity between the influential features associated with
different samples of the dataset, the discrepancies between
the structure and presentation of the maps are very clear and
imply the need for different feature sets when developing
predictive models for early prediction of sepsis.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we applied machine learning and SHAP anal-
ysis to investigate the efficacy of using machine learning for
predicting sepsis among critically ill patients and to explore
the features that contribute to these predictions at different
time intervals (Hour 2 and Hour 6 of ICU admission). The
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(a) Prediction results after hour 2 (b) Prediction results after hour 6

Fig. 4: Heatmap presentation of data points clustered based on the contributing features.

results of our predictive models show that machine learning
can be utilized to assist clinicians in distinguishing between
patients who would develop sepsis and those who would
not by analyzing data collected at admission (AUC: 70%,
sensitivity 66%).

We further analyzed the top two features presented in
both global feature importance charts (see Figure 2) and
found that mean heart rates were very similar between all
patients; however, a very rapid heart rate (>110 bpm) was
more common in patients who developed sepsis than those
without. Interestingly, systolic blood pressure showed similar
values between patients with and without sepsis, while it
is the second most influential feature in both time intervals
under study. Furthermore, we found that a higher percentage
of abnormal respiration rate was observed in patients who
developed sepsis.

Several limitations should be noted. This study only
presents the prediction results based on the data collected
after the first and the fifth hour of ICU admission. Including
data from later hours of admission might improve the per-
formance of the predictive models presented in this study.
However, as giving appropriate treatment to patients with
sepsis as soon as possible is critical for improving outcomes
for this life-threatening condition, using the data from the
hours leading up to sepsis development may not help achieve
this goal.

Moreover, other machine learning algorithms, such as
Long Short-Term Memory (LSTM), that can model temporal
trends of patient data could generate different results in terms
of both prediction performance and feature contributions. To
mitigate the impact of this limitation on the results of our
study, we tried this approach before finalizing the design
of the study. As the results of our best-performing model
(i.e. logistic regression) were comparable to those of LSTM,
we decided to only focus on one best-performing model
and design the SHAP analysis section based on only one
predictive model.

REFERENCES
[1] WHO. (2020). “Sepsis: Key facts,” [Online]. Available: https://www.

who.int/news-room/fact-sheets/detail/sepsis (visited on
01/30/2021).
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