
  

 

Abstract—Arterial blood pressure (ABP) waveform is a 

common physiological signal that contains a wealth of 

cardiovascular information. According to the cardiac cycle, the 

ABP waveform is divided into rapid ejection, systolic and 

diastolic phases. Therefore, the characteristic points of the 

arterial blood pressure waveform, i.e. their onsets, systolic 

peaks, represent the timing of the minimum and maximum 

pressures. It is important to detect these characteristic points 

accurately. Recently, many researchers have introduced some 

feature points detection methods, but the accuracy is not 

particularly high. In this paper, a deep learning method is 

proposed to achieve periodic segmentation and feature points 

detection of ABP signals using a one-dimensional U-Net 

network. The network can split the ABP signal into two parts 

and accurately detect the feature points. The method is validated 

on an ABP dataset of 126 people, 500 people each. Performances 

are good at different tolerance thresholds, with an average time 

difference of less than 1.5 ms. Finally, the method performs with 

99.79% and 99.79% sensitivity, 99.99% and 99.94% positive 

predictivity, and 0.23% and 0.27% error rates for both onsets 

and systolic peaks at a tolerance threshold of 30 ms. To our 

knowledge, this is the first paper to use deep learning methods 

for the onsets and systolic peaks detections of ABP signals. 

I. INTRODUCTION 

Blood pressure (BP) is the pressure in the blood vessels 
caused by blood flow. Arterial blood pressure is a vital sign 
that reflects the health of the body's cardiovascular system. 
The arterial blood pressure (ABP) waveform includes a large 
amount of information such as heart rate, systolic pressure, 
mean arterial pressure, diastolic pressure, arterial stiffness [1] 
and many cardiovascular parameters [2]. The blood pressure 
at onsets and systolic peaks represents diastolic blood pressure 
(DBP) and systolic blood pressure (SBP) during the cardiac 
cycle, respectively. When SBP and DBP values exceed a 
certain level, it is called hypertension. Millions of people 
worldwide currently suffer from hypertension. 

A typical ABP waveform and feature points are shown in 
Fig.1. According to the staging of the ejection phase, the onset 
is considered as the starting point of the systolic phase, and the 
systolic peak point is considered as the peak point of the blood 
pressure waveform and the end point of the rapid ejection 
phase. Moreover, the time interval between onset and peak 
systole is the time of the rapid ejection phase [3], and detection 
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of these feature points can be used for ABP waveform cycle 
segmentation and heart rate information extraction. 

The onsets and systolic peaks detections of ABP signals 
are used to obtain relevant diagnostic markers, such as pulse 
transit time (PTT) and pulse wave velocity (PWV), etc. The 
Heart rate variability (HRV) [4] and augmentation index (AI) 
can also be easily obtained by localizing the onsets and systolic 
peaks. 

 

Figure1. A typical ABP waveform and its feature points. 

Several methods have been proposed for these feature 
point detections. However, many of them focus either on the 
onsets or on the systolic peaks. There are relatively few 
systems and algorithms dedicated to these two feature points, 
and the detection accuracies of many of the methods are not 
very high. W. Zong et al. proposed a windowed and weighted 
slope sum function (SSF) to detect ABP onset points and 
achieved 96.41% accuracy on 39,848 beats by manual 
annotation [5]. B. N. Li et al. proposed an automated delineator 
for detecting arterial blood pressure waveforms by finding 
inflection points and zero-crossing pairs and using combined 
amplitude and interval criteria methods [6]. M. Schmidt et al. 
proposed a systolic peak detector for blood pressure 
waveforms using 4th order cumulant [7]. O. Singh et al. 
proposed a delineator based on empirical wavelet transform 
for the detection of onset and systolic peaks in ABP signals 
[8]. B. T. Ricardo Ferro et al. used the Hilbert transform 
method for the automatic detection of onset and systolic peaks 
[9]. L. Yang et al. investigated the performance of algorithm 
waveform descriptor (WD), global minimum within a sliding 
window (GM) on the detection of onsets [10]. Pander, T. et al. 
used derivative Gaussian filters and moving average filters to 
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obtain smoothed signals, and then applied amplitude 
thresholding and fuzzy median clustering methods to improve 
the accuracy [11]. 

In the past few years, deep learning methods have been 
widely used in the fields of visual recognition and image 
recognition. Typical deep learning methods include deep 
neural networks (DNNs), convolutional neural networks 
(CNNs), and recurrent neural networks (RNNs), as well as 
long short-term memory (LSTMs). U-Net is a fully 
convolutional network developed in [12] for biomedical image 
segmentation. The goal of U-Net is to produce semantic 
segmentation where the output is the same size as the original 
input image, but each pixel in the image is colored as one of X 
colors, where X represents the number of classes to be 
segmented. U-Net is more suitable for image segmentation and 
physiological signal segmentation than other convolutional 
neural networks, such as AlexNet, VGGNet, etc. Nowadays, 
U-Net has been successfully used in ECG signals for R-wave 
localization [13] or P-wave localization [14], so U-Net is also 
considered to be suitable for application in ABP signals. 

In this paper, since the ABP waveform is a one-
dimensional (1D) signal, we convert the original U-Net into a 
one-dimensional network. The network can divide the ABP 
signal into two parts and accurately detect the feature points. 
The method is validated on a 126-person ABP dataset and 
achieves very high accuracy. 

II. MATERIALS AND METHODS 

A. Data 

The data source comes from a total of 126 individuals, and 
is extracted from the arterial data (ABP) of the VitalDB 
database [15], which is an open-access public dataset of vital 
signs and biosignals collected by the Seoul National 
University Hospital Department of Anesthesia using the Vital 
Recorder program. The Vital Recorder program is a free 
research tool for recording time-synchronized physiological 
data from multiple intraoperative devices and patient monitors. 
The collected ABP waveforms are measured from the radial 
artery by a device called SNUADC with a sampling rate of 100 
Hz. 

B. Data Preprocessing 

The entire preprocessing process is described as follows. 
Each individual’s ABP waveform is 500s with an initial 
sampling rate of 100 Hz, and then the data is resampled to 200 
Hz. Since the original ABP signals contain several types of 
noise, including power line interferences and other high 
frequency noises, a wavelet filter based on the "sym5" basis 
function is used to remove high frequency noises. After 
manual annotation of the systolic peaks and onset points, each 
ABP segment was divided into 5.12 seconds of 1024 sample 
points. Finally, the amplitude of each segment was normalized 
to between 0 and 1, since the amplitude does not affect the 
location of the feature points. The data set was distributed 
using approximately 80% of the data (101 individuals) as the 
training set and approximately 20% of the data (25 
individuals) as the test set. 

Since the purpose of this paper is to detect onsets and 
systolic peaks, the ABP waveform is divided into two types 
according to the characteristics: rapid ejection phase and 
residual phase. Therefore, the labeled signal has two parts: 0 
(rapid ejection cycle), 1 (rapid ejection cycle to the end of a 
pulse cycle), and the starting point of each phase is the 
characteristic point. The entire annotation is done manually by 
an experienced engineer with the help of softwares. A typical 
annotation of an ABP waveform is shown in Fig.2. 

 

Figure 2. An ABP waveform and its annotations. 

C. Networks Architecture 

In this paper, the U-Net model is transformed into a one-
dimensional network for signal processing of ABP waveform 
time series data. The network is shown in Fig.3. The encoder 
path on the left side contains a series of convolutional 
networks consisting of two repeated 3 × 1 convolutions, each 
followed by a rectified linear unit (ReLU) layer. After the two 
convolutional layers, each downsampling uses a 2 × 1 
maximum pooling layer with a step size of 1. In each 
downsampling step, the network doubles the number of feature 
maps and halves their size. There are five downsampling 
stages in total. 

The decoder path on the right is used for precise 
localization using transposed convolution and includes 
upsampling of the feature maps, followed by a 1×1 
convolution layer at each step, which halves the number of 
feature maps. Then, high-resolution features are copied 
directly from the systolic path and combined with the 
upsampled features for subsequent convolution. In the final 
layer, 1×1 convolution with a sigmoid layer is used to classify 
the ABP waveforms into 2 classes and predict the locations of 
the ABP feature points. In summary, the input to the model is 
1024 × 1 one-dimensional data, and the final layer outputs the 
probabilities for each sample point using a sigmoid layer 
through a U-Net fully convolutional network. The output is 
smoothed using a binary method with a threshold of 0.5. 

The model is built on the Keras 2.3.1 platform with 
Tensorflow 1.15.0 as the runtime backend and programmed in 
Jupyter notebook using Python 3.7.6. Finally, the model runs 
on an AMD Ryzen5 2400G computer with 32G DDR4 
memory, OS win10, and graphics card GTX-1660 with 6G 
memory for acceleration. The model was trained using the 
Adam optimizer at a learning rate of 0.0001 for 80 epochs with 
a batch size of 128. 
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Figure 3. The proposed networks. 

 

III. RESULT 

A.  Evaluation Metrics & Test Performance 

The performances of ABP feature points detection 
algorithms were evaluated by several metrics [6]: sensitivity 
(Se), positive predictivity (P+), and error rate (Err), which are 
given by equations (1-3).  

Sensitivity: 

TP
Se =

TP + FN

  

Positive predictivity: 

 


+ TP
P

TP FP

  

Error rate:  

 





FP FN
Err

TP FP

 
 

Where TP represents the number of true positives, FN 
represents the number of false negatives, and FP represents the 
number of false positives. Thus, Se represents the percentage 
of true beats detected to the overall beats of the ABP 
waveforms, while P+ calculates the percentage of true beats 
detected to all beat annotations. As in many other systems [10], 
a tolerance threshold of 30 ms (±6 sample points) is used to 
judge the annotation results. 

Table I shows the results of the algorithm on the test set 
consisting of 2440 segments with more than 15,000 cycles of 
ABP signals. Different thresholds were chosen to demonstrate 
the performance of the algorithm, including 5 ms (±1 sample 
point), 10 ms (±2 sample points), 20 ms (±4 sample points), 
and 30 ms (±6 sample points). The detailed performances are 
shown in Table I. It can be seen that the algorithm performs 
very well even at the 5 ms and 10 ms thresholds. And the 
performance of the algorithm improves very slowly as the 
threshold value increases. Finally, Se and P+ are both better 
than 99.7% in the 20 ms and 30 ms tolerance ranges, and the 
error rate is less than 0.3%, respectively. 

In addition, the time difference between manually labeled 
and detected feature points can be defined as the parameter Δt, 
which can further evaluate the accuracy of the model. The 
average ∆t for the onsets and systolic peaks in Table II is 1.3 
ms (0.26 sample points) and 1.24 ms (0.25 sample points), 
both of which are much smaller than one sample point. 

TABLE I.  TEST PERFORMANCE ON DIFFERENT THRESHOLDS 

Time 
Onsets Systolic peaks 

Se(%) P+(%) Err(%) Se(%) P+(%) Err(%) 

5 ms 99.76 99.95 0.29 99.67 99.82 0.52 

10 ms 99.79 99.99 0.23 99.74 99.90 0.36 

20 ms 99.79 99.99 0.23 99.78 99.94 0.28 

30 ms 99.79 99.99 0.23 99.79 99.94 0.27 

TABLE II.  TIME DIFFERENCE WITH MANUAL ANNOTATIONS 

Parameter Onsets Systolic peaks 

∆t 1.3 ms 1.24 ms 

B.  Annotations for different types of ABP waveforms 

Fig.4 shows the labeling results of different ABP 
waveforms using the algorithm. It can be seen that the 
proposed model correctly completes the segmentation for 
different ABP waveforms from 6 individuals with different 
rhythms and waveform morphologies. The phases from the 
onset points to the peak points are marked as blue and called 
onset2peak, and the phases from the peak points to the next 
onset points are marked as green and called peak2onset. 

 

Figure 4. Annotations result for different types of ABP waveforms. 

 

Fig.5 shows the annotation results of 25-second ABP 
waveforms using this algorithm. The algorithm first annotates 
the 5.12s data segment and then splices it into a 25s waveform. 
As can be seen in Fig. 5(a) and Fig. 5(b), the annotation is 
correct. It proves that the algorithm is able to annotate 
correctly in long ABP sequences. 
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Figure 5. Annotations result for long ABP waveforms. 

C.  Performance comparison with other related works 

The detailed test metrics of the different methods are 
shown in Table III, and all optimization parameters are shown 
in bold. Compared with other papers [10-11], [16-17], the 
method proposed in this paper shows a significant 
improvement in the metrics of onsets and systolic peaks. The 
results for both Se and P+ were better than 99.7%. In the 
evaluation of onsets, the Se is about 0.17% lower than the 
value in Ref. [6], but its P+ is much higher. The Err of this 
method is about 0.23%, which is significantly lower than the 
1.43% to 11.27% of other papers. The situation is similar to 
systolic peaks. The Se is slightly lower than Ref. [6] with about 
0.09%, but its P+ is much higher, and the Err reduces to 0.27%, 
which is also significantly lower than the other references of 
1.54% to 10.32%. This proves that the system has high 
accuracy. 

TABLE III.  COMPARE WITH OTHER WORKS 

Papers 
Onsets Systolic peaks 

Se(%) P+(%) Err(%) Se(%) P+(%) Err(%) 

Ref. [6] 99.96 98.73 1.43 99.88 98.69 1.54 

Ref. [16] 96.89 94.55 8.47 / / / 

Ref. [17] 99.83 94.31 5.8 99.83 95.24 4.9 

Ref. [10] 97.23 91.36 11.27 / / / 

Ref. [11] / / / 95.87 94.33 10.32 

Proposed 99.79 99.99 0.23 99.79 99.94 0.27 

IV. CONCLUSION 

As far as we know, this is the first paper to use a deep 
learning approach to annotate ABP waveforms. In this paper, 
a deep learning network U-Net is proposed to segment the 
arterial pressure pulse signal and label the feature points. It can 
adapt to the characteristics of different waveforms and find the 
feature points accurately. To detect onsets and systolic peaks, 
the model classifies ABP waveforms into 2 classes. The 
method is validated on an ABP dataset of 126 individuals. 
Using the method of this paper, the metrics are greatly 
improved. The sensitivity and positive predictivity rate of both 
onsets and systolic peaks are higher than 99.7%. More 
importantly, it has a much lower error rate of 0.23% and 0.27% 
for onsets and systolic peaks, respectively. It performs well on 
different types of test waveforms, proving that the method can 
be applied to different waveform morphologies. 

However, the algorithm also has some drawbacks. The use 
of convolutional neural networks increases the hardware 
requirements of the computer, which usually requires GPU 

acceleration to guarantee the computational speed, and is 
therefore also more difficult to implement in real-time 
recognition areas, such as embedded applications. In addition, 
since the input length of the model is fixed, for processing long 
sequences, it needs to be segmented and then fed into the 
network, thus introducing an additional pre-processing 
process. 
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