
  

 

Abstract— In this paper, a study is reported on the popular 

BraTS dataset for segmentation of brain tumor. The BraTS 2019 

dataset is used that comprises four MR modalities along with the 

ground-truth for 259 high grade glioma (HGG) and 76 low grade 

glioma (LGG) patient data. We have employed U-Net 

architecture based 2D convolutional neural network (CNN) for 

each of the orthogonal planes (sagittal, coronal and axial) and 

fused their predictions. The objective function is aimed to 

minimize Dice loss between the binary prediction and its actual 

labels. Samples having tumor information are considered for 

each patient data to avoid training on non-informative data. The 

models are trained on 222 HGG data and tested on 37 HGG data 

using performance metrics such as sensitivity, specificity, 

accuracy and Dice score. Test-time augmentation is also 

performed to improve the segmentation performance. 7-fold 

cross validation is conducted to analyze the performance on 

different sets of training and testing data. 

 

Index Terms— Brain tumor segmentation, MRI, Multi-view 

Convolutional Neural Network 

I. INTRODUCTION 

Early detection and diagnosis are the keys for appropriate 
treatment of terminal diseases such as cancer. Magnetic 
Resonance Imaging (MRI) and Computed Tomography (CT) 
scans of the pathologic organ are the most commonly used 
diagnostic tools. Often structural neuroimaging such as 3D 
volumetric brain MRI are performed to perceive the shape, 
size and location of the tumor in the brain. These medical 
images are then analyzed by doctors and surgeons to examine 
the tumor condition by visualizing the 3D data slice by slice 
and then initiate and monitor the therapy. However, manually 
tracing and delineating the tumor regions from the data could 
be tedious for them and also prone to error. Computer aided 
diagnosis can be a helping hand to this manual system that can 
also reduce observational oversights.  

Biomedical image segmentation is one of the critical fields 
of study where precision and accuracy matters a lot. Over the 
last few decades, there has been an immense shift in image 
segmentation techniques; from traditional image processing 
techniques such as watershed segmentation, k-means 
clustering to semi-automated machine learning approach 
involving feature extraction from ROI for training classifiers 
to fully automated data-driven deep learning methods such as 
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the popular CNN. Brain tumor segmentation from MR images 
has gained attention of deep learning researchers to build an 
automated system to perform the segmentation task efficiently. 
Among various neural networks studied, CNN has shown 
reliable segmentation results. 3D CNN exploits volumetric 
characteristic of brain MR data but at the cost of large memory 
space and longer training time [1]. To overcome this yet 
reinstating the 3D information, multi-view 2D CNNs having 
similar network structure as 3D CNN have been found to be 
useful [2]. It is computationally efficient and considers 
information from three orthogonal planes (sagittal, coronal and 
axial). Predictions from these planes can be fused by 
averaging, max-pooling or majority voting. Furthermore, a 
deep neural network works well when trained on large dataset 
and data augmentation is one way to achieve it. Various 
augmentation techniques such as data flipping, rotation, 
translation, shearing, and deformation are used. Also, test-time 
augmentation is used to obtain better segmentation results.  

In this study, we have performed brain tumor segmentation 
on high quality annotated multi-modal BraTS 2019 dataset of 
brain glioma [3-7]. U-Net architecture based multi-view 2D 
CNNs are employed. Segmentation operation is performed 
along the sagittal, coronal and axial axes, thus giving three 
trained models. These models predict the segmentation 
probability maps of the test data which are then fused by 
averaging. This paper is organized as follows; Methodology 
(model architecture, multi-view 2D CNN integration unit), 
experiments and results (dataset used, implementation details 
and segmentation results), discussion and conclusion. 

II. METHODOLOGY 

In this study, multi-view 2D CNN models are considered to 

combine results from three orthogonal views. The schematic 

diagram is shown in Fig.1. 
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Figure 1. Schematic block diagram 
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A. Model Architecture 

A deep encoder-decoder architecture for CNN model have 
been employed to perform tumor segmentation, as shown in 
Fig.2. [8]. Encoder is the contracting path that down-samples 
the input slices into small representation with high-level 
features whereas the decoder in the expanding path up-samples 
the compressed form back to give segmentation results in same 
resolution as input data. Skip connection combines low-level 
features with high-level features to minimize loss of fine 
information and then serve as input to the next layer. Batch 
normalization is performed during training (batch size of 10) 
to supervise weights imbalance during training that may cause 
network instability. This is followed by rectified linear unit 
(ReLU) activation to enhance the learning ability. The last 
convolution layer has filter size of 2, one for each class labels 
i.e., tumor and non-tumor followed by sigmoid activation 
layer. To control over-fitting, dropout function is used with a 
rate of 0.2 after the initial convolution layer in the training step. 

B. Multi-view 2D CNN Integration unit 

Since 3D CNN computation requires considerable memory 
and 2D CNN along only one direction will restrain details from 
other two directions, multi-view 2D CNN is used i.e. along the 
three orthogonal axes (sagittal, coronal and axial). Data along 
each orientation are fed to three separate 2D CNN based 
encoder-decoder network. Sigmoid activation function on the 
last layer of the networks is applied to acquire probability 
maps of 3D volume for each orientation which are then 
integrated by averaging to get the final probabilities [9]. 
Thereupon, thresholding is performed to get the binary labels 
for all the voxels of the 3D volumetric brain data. 

III. EXPERIMENTS AND RESULTS 

A. Dataset used 

We have used volumetric 3D brain MRI of 259 HGG cases 
along with their ground-truth tumor segmentation labels from 
BraTS 2019 training dataset. All the cases have four MRI 
modalities (T1, T1-contrast enhanced, T2, FLAIR), each with 

input size of 240x240x155. For axial view, whole slices 
cropped to 160x160 (160x144 for sagittal and coronal views) 
are fed as input to the network. They are rigidly aligned and 
resampled to 1x1x1 mm isotropic resolution and are skull-
stripped. The four modalities are treated as input channels. 
Since the intensity distribution varies across the dataset, we 
have normalized the images for each channel by subtracting 
the mean and dividing by the standard deviations. Moreover, 
only those slices are elected that carry tumor pixels for training 
to save on computation time and restrain from training 
unlabeled data. 

B. Implementation details 

The proposed workflow was developed and implemented 
using TensorFlow and Keras in python. Three 2D CNN 
models are trained using dataset provided by BraTS 2019 
organizers, one model for each of sagittal, coronal and axial 
plane. To update the model parameters, adam optimizer is 
employed with learning rate of 0.0001. The models are trained 
with batch size of 8 and epoch number is set to 1. Furthermore, 
the tumor region which is of prime concern often contributes 
inconsiderably to the overall 3D brain volume. As a result, 
while training, the model become biased towards the dominant 
class i.e. healthy tissue, thereby performing poorly. To 
decrease the loss contribution by the data points (x) already 
well-classified, Dice loss function has been incorporated as the 
objective function. 

The probability maps from sigmoid layer for each plane 
have probability value for each voxel of being tumor. These 
maps are then averaged to get the final segmentation 
probability map. The voxels having value more than 0.5 are 
classified as tumor and others as background (non-tumor). The 
method has been evaluated on HGG data by implementing a 
7-fold cross validation with 222 training data and 37 test data. 
The choice of  7-fold was to have more data for training phase 
as well as for performance evaluation purpose i.e. testing 
phase and in this way segmentation performance was analyzed 
on all the 259 HGG data. 

Figure 2. Diagrammatic representation of encoder-decoder network 

4112



  

C. Segmentation Results 

We used the corresponding trained models to obtain the 
segmentation results and the associated evaluation metrics 
value for each fold trained on HGG dataset. During testing, we 
incorporated data augmentation by flipping method [9]. The 
results from the flipped version were averaged with the 
original results. The sensitivity, specificity, accuracy and Dice 
score values for 37 test data are illustrated in the boxplots 
shown in Fig.3. The horizontal line within the boxes shows the 
mean values of each folds for the test data. 

 

 

In Fig.3 (a), the sensitivity boxplots shows outlier among 
the data with many actual tumor pixels that were classified as 
non-tumor pixels (false negatives) whereas the outliers in 
specificity boxplots, Fig.3 (b) shows those data point whose 
many non-tumor pixels were misclassified as tumor pixels 
(false positives). The overall tumor segmentation performance 
for such an imbalanced dataset is reflected in the Dice score 
boxplots whose outliers represent those data point that were 
not segmented well (either false positives and/or false 
negatives). The average performance across the different folds 
show sensitivity of 87.87%, specificity of 99.64% accuracy of 
99.4% and Dice score of 0.8573. 

The segmentation results for some of the test data are 
displayed in Fig.4 (b). The samples displayed shows how well 

the tumor is segmented when compared to ground-truth with 
few false negatives.  

We have compared our method with selected existing 
models for whole tumor segmentation on 125 validation data 
of BraTS 2019 and their mean values are illustrated in Table. 
1. It can be observed that 3D approaches outperforms 2D 
approaches. However, among the 2D approaches, our model 
shows decent performance.  

Method 
N/w 

Type 

Dice Score Sensitivity Hausdorff_95 

Range:0 -1 

(greater 
the better) 

Range:0-1 

(greater the 
better) 

Range:>=0 

(smaller the 
better) 

FCNN [10] 2D 0.73 0.67 12.8 

DC U-Net 

[11] 

2D 0.885 NA 19.74 

Our Model 2D MV 0.817 0.751 11.23 

Multi-Res 
[12] 

3D 0.86 0.85 8.42 

MSCN [13] 3D MV 0.886 0.921 6.23 
 

 

IV. DISCUSSION AND CONCLUSION 

In this study, we evaluated the multi-view tumor 
segmentation on BraTS dataset. For this, we performed a 7-
fold experiment to segment high grade glioma (259 data) from 
the BraTS dataset. Due to tumor diversity, we cannot limit to 
single view analysis as it won’t be generalizable and hence, we 
utilized the three orthogonal planes to exploit the 3D 
contextual features which improves the segmentation 
efficiency compared to single-view approach. We analyzed 
the sensitivity, specificity, accuracy and Dice score of 
segmentation results.  With test-time augmentation, the results 

Figure 3. Segmentation evaluation metrics for 7-Fold 

cross validation experiments (a) Sensitivity, Dice score, 

(b) Specificity, Accuracy 

Figure 4. (a) Ground Truth, (b) Segmentation Results 

TABLE 1. Dice score, sensitivity, specificity of some 

existing methods and our method are present in the table 

(FCNN: Fully Convolutional Neural Network, DC: Dense 

Channels, Res: Resolution, MSCN: Multi-Step Cascaded 

Network, N/w: Network, MV: Multi-View, NA: Not 

Available) 
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further improved by 0.05-0.2%. In future study, we plan to 
further investigate and undertake more exhaustive evaluation 
of multi-view approach with variation in fusing strategy and 
also improve the performance on outlier data. 
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