
  

 

Abstract—Photoplethysmography (PPG) is an important 

signal which contains much physiological information like heart 

rate and cardiovascular health etc. However, PPG signals are 

easily corrupted by motion artifacts and body movements 

during their recordings, which may lead to poor quality. In 

order to accurately extract cardiovascular information, it is 

necessary to ensure high PPG quality in these applications. 

Although there are several existed methods to get the PPG signal 

quality, those algorithms are complex and the accuracies are not 

very high. Thus, this work proposes a deep learning network for 

the signal quality assessment using the STFT time-frequency 

spectra. A total of 5804 10s signals are preprocessed and 

transformed into 2D STFT spectra with 250 × 334 pixels. The 

STFT figures are as the input of the CNN networks, and the 

model gives the result as good or bad quality. The model 

accuracy is 98.3% with 98.9% sensitivity, 96.7% specificity, and 

98.8% F1-score. And the heart rate error is much reduced after 

classification with the reference of ECG signals. Thus, the 

proposed deep learning approaches can be useful in the 

classification of good and bad PPG signals. As far as we know, 

this is the first article using deep learning methods combined 

with STFT time-frequency spectra to get the signal quality 

assessment of PPG signals.  

I. INTRODUCTION 

The photoplethysmography (PPG) is an important 
physiological signal which can provide heart rate (HR) [1], 
blood oxygen saturation [2] directly, and also obtain blood 
pressure [3], respiration rate [4], arterial stiffness information, 
vascular aging [5], and biometric recognition. 

The quality of PPG will affect the accuracy of parameter 
extraction. Take heart rate as an example, poor quality signals 
affect HR acquisition. As shown in Fig.1, the maximum 
frequency peak of PPG signal is typically considered as the 
HR after removing the DC part. The maximum frequencies in 
both PPG and ECG spectrums in Fig.1 (a) are 1.4 Hz, which 
leads to 84 bpm in HR estimation. However, the PPG signal in 
Fig.1 (b) is corrupted by motion artifacts and its maximum 
frequency is 0.6Hz in the PPG spectrum rather than 1.4 Hz in 
the ECG spectrum, which leads to the wrong result in HR 
estimation. In more rigorous conditions, such as respiratory 
signal extraction or arterial stiffness diagnosis, more attention 
is paid to the quality of the waveform.. In those conditions, 
many parameters are extracted from the PPG waveforms. 
These papers also show the signal quality is important when 
extracting respiration rate [6]. 
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Several methods have been proposed for PPG signal 
quality detection. However, the accuracy is not very high, and 
most of the methods require complex algorithm designs or 
feature extractions. J. A. Sukor et al. proposed an automatic 
rejection method for artifact-contaminated PPG waveforms 
based on waveform morphology analysis and a decision tree 
classifier [7]. Q Li et al. introduced a dynamic time warping 
(DTW) method to stretch the single-cycle pulse waveform to 
match a running template and combine it with several other 
signal quality features, which are then presented to a 
multilayer perceptron (MLP) neural network to indicate good 
and bad quality [8]. R Couceiro et al. proposed a motion 
artifact detection algorithm based on the variation of time-
domain and period-domain features of PPG signals and using 
a support vector machine model to distinguish between clean 
and corrupted signals [9]. S. Cherif et al. described a new 
method based on waveform morphology for detecting artifacts 
in PPG signals using a random distortion test to perform 
adaptive thresholding [10]. C. H. Goh et al. designed a 1-D 
Convolutional Neural Networks (CNN) model to classify five-
second PPG segments into clean or artifact-affected segments 
[11]. S.-H. Liu et al. evaluated the qualities of PPG signals 
from a wearable forehead pulse oximeter with CNN and SVM 
approaches and achieved lower error ratios of oxygen 
saturation ratio (SpO2) after classification [12].  

 

Figure 1. Different PPG signal qualities for HR estimation. 

Deep learning has gained widespread attention due to its 
powerful ability to automatically learn from data. CNN was 
first proposed by LeCun et al. [13] and was developed through 
a project to recognize handwritten digits. With the advent of 
CNN models, correlations of spatially adjacent pixels can be 
extracted by applying nonlinear filters, and various local 
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features of images can be extracted. In recent years, deep 
learning has been successfully applied to the biomedical field. 
CNN methods have been widely used in the ECG 
classification of arrhythmia [14], the blood pressure and heart 
rate estimation from PPG signals [3], and the heart rate 
extraction and biometric Identification from PPG signals in the 
ambulant environment [15] et al. 

Consider the limitations of the above methods, this paper 
proposes a deep learning network for the signal quality 
assessment using STFT time-frequency spectra. Both of the 
time and frequency domain information are contributed to 
getting signal quality using the STFT images. The 1D PPG 
signals are first transformed into 2D STFT images, and the 
CNN model takes those images as the inputs and gives the 
classification result of good or bad quality. The model is 
validated on a dataset of 102 people and performed with high 
accuracy. 

II. MATERIALS AND METHODS 

The whole processing flow is described as follows. The 
PPG data are from 102 individuals. Each PPG signal is 600s, 
the PPG signals are then divided into 10s segments. Then we 
convert the one-dimensional PPG signal into a two-
dimensional STFT spectrum and puts it into the CNN network. 
Finally, the model divides the corresponding signal quality 
into good or poor. 

A. Data 

The data sources, 102 individuals in total, were derived 
from the arterial data (ABP) of the VitalDB database, which is 
an open-access public dataset of intraoperative vital signs and 
biosignals collected by the Department of Anesthesia at Seoul 
National University Hospital using the Vital Recorder 
program [16]. The collected PPG waveforms were measured 
from the finger by a device called SNUADC with a sampling 
rate of 100 Hz. 

B. Signal quality annotation 

Each PPG segment was labeled as ‘Good’, ‘Bad’, or ‘Not 
sure’ manually by the expert engineers. The total annotation 
uses ECG signals as a reference. A good PPG signal is defined 
as: (1). the PPG signal has a clear and undisturbed waveform. 
(2). the reflection points of the waveform are relatively 
consistent. (3). the heart rate information is consistent with the 
corresponding ECG signals. 

As there are few PPG signals with ‘Not sure’ quality, 
therefore, the signals of this category are discarded. The 
remaining signals are divided into good quality (1) and poor 
quality (0). Finally, a total of 5804 segments of signals are 
selected, of which 3969 segments are high-quality signals, and 
1835 segments are low-quality signals. The distribution of the 
data set uses 80% of individual data (82 individuals) as the 
training set and 20% of the data (20 individuals) as the test set. 

C. Short-time Fourier transform (STFT) 

STFT has been widely used in the field of digital signal 
processing. Compared with the classical FFT theory that loses 
time-domain information, STFT uses a suitable window size 
to obtain the corresponding time-frequency information. 
When analyzing a non-smooth signal, it is assumed to be 
approximately smooth over a finitely supported range of time 

windows [14]. For a discretized digital signal, the 
mathematical formulation is shown in Equation 1. 
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where x[n] denotes the PPG signal with a sampling rate of 100 
Hz and w[n] is the window function. In this paper, a Hanning 
window with a window size of 256 is used. 

Since the effective frequency range of the PPG signal is 0 
~ 10 Hz, and most of the energy is within 0 ~ 5 Hz, the 
frequency spectrum of the STFT selected in this paper is 0 ~ 8 
Hz. Fig.2 (a) is a clean and high-quality PPG signal and its 
STFT spectrum, Fig.2 (b) is a partially polluted PPG signal 
with low quality and its STFT spectrum. The STFT 
transformation is processed by MATLAB 2019a and then 
resized to 250 × 334 pixels. 

 

Figure 2. Different PPG signal quality and STFT Spectra. 

D. Deep learning methods 

The proposed CNN architecture for PPG quality 
assessment is shown in Fig.3. The input of the network is 2D 
STFT of PPG signals at 250 × 334 pixels. The convolutional 
layers are used for extracting features from the STFT images. 
The pooling layers are placed behind the convolutional layer 
to reduce the size of the feature maps. The dropout layers are 
used for avoiding overfitting and the activation function is 
RELU (Rectified Linear Unit). Finally, a full connection (FC) 
layer with a sigmoid activation function is used to output the 
probability of good or bad classes. The code is available on 
https://github.com/shangjianshizhe/PPGSQI. 

 

Figure 3. The proposed network. 

The model is built on the Keras 2.3.1 platform, the running 
background is Tensorflow 1.15.0 and Python 3.7.6 is used for 
programming in the Jupyter notebook. Finally, the model runs 
on an AMD Ryzen5 2400G computer with 32G DDR4 
memory, the operating system is win10, and the graphics card 
is GTX-1660 with 6G memory for acceleration. The model 
uses the adam optimizer and binary cross-entropy as the loss 
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function. The training epochs are 90, and the batch size is 32 
with a learning rate of 0.00005. 

III. RESULT 

A.  Evaluation Metrics  

Many metrics are used to evaluate the proposed method 
[11]. Accuracy, sensitivity, specificity and F1 scores are 
calculated as defined in equations (2) - (5). The receiver 
operating characteristic (ROC) curves and the area under the 
receiver operating characteristic curve (AUC) are also 
considered. 

Accuracy:  
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where TP stands for true positive; TN stands for true negative; 
FP stands for false positive; FN represents false negative.  

B.  Test Results 

The model is validated in 1131 fragments, and the test 

results are shown in Table I. Table I presents accuracy, 

sensitivity, specificity, F1-score and support values of the two 

classes. Fig. 4 shows the confusion matrix of the proposed 

model. Of all the results, 1112 are considered correct and 19 

are misclassified. The ROC is shown in Fig. 5. The AUC of 

0.997 represents a reliable performance. 

TABLE I.  TEST RESULTS  

Metrics Se Sp F1-score ACC Support 

Values 98.9% 96.7% 98.8% 98.3% 1131 

 

 

Figure 4. The confusion matrix. 

 

Figure 5. The ROC curve. 

C.  HR performance 

The FFT-based heart rate estimation algorithm was used 
by finding the maximum peak of the spectrum within 2 Hz. 
Prior to classification, the HRs of 1131 PPG segments are 
reported as 79.7 ± 16.3 (mean ± standard) BPM (beats per 
minute). After classification using the proposed model, the 
PPG segments were re-evaluated using the same algorithm; 
the heart rates of good quality segments are 81.7 ± 13.0 BPM 
while heart rates of poor quality segments are 74.7 ± 22.1 
BPM.  

The errors before classification are 6.18 ± 0.29 (mean ± std) 
BPM compared to the HRs of the ECG signals. After model 
classification, the errors for the good PPG segments are 3.20 ± 
0.21 BPM, while the errors for the poor PPG segment are 
14.07 ± 0.35 BPM. Details are listed in Table II. The bolded 
sections show the lower error and standard deviation values, 
indicating that classification as clean PPG segments yielded 
more consistent results in heart rate assessment. 

TABLE II.  HR PERFORMANCE  

Parameter Unclassified Good Poor 

PPG HR 
(BPM) 

79.7 ± 16.3 81.7 ± 13.0  74.7 ± 22.1 

Error (BPM) 6.18 ± 0.29 3.20 ± 0.21 14.07 ± 0.35 

D.  Compare with other baseline methods 

The method also compares with several machine learning 
algorithms. In traditional machine learning models often use 
Histogram of Oriented Gradients (HOG) to extract 
information from pedestrian trajectories or ECG images, the 
method is chosen in this paper to extract image features from 
STFT images of PPG and train three classifiers for PPG quality 
evaluation. In this paper, three baseline algorithms, multilayer 
perceptron (MLP), support vector machine (SVM), and 
random forest (RF) are also applied. A total of 1764 HOG 
features were extracted from the STFT spectrum of PPG and 
put into the machine learning algorithms of MLP, RF, and 
SVM. HOG feature extraction was processed by MATLAB 
2019a. For a better performance comparison, we also applied 
a 1D CNN network, which uses the original PPG waveform as 
input to the model. 

The performance comparisons are shown in Table III and 
all the optimal parameters are bolded. As can be seen from the 
Table, comparing with the machine learning algorithms such 
as MLP, RF, and SVM, the 2D CNN model proposed in this 
paper has much better sensitivity, specificity, F1-score, and 
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accuracy. The performance of the 2D CNN combined with the 
STFT approach also improved slightly on the 1D CNN, which 
proves that the method proposed in this paper is very effective. 

TABLE III.  PERFORMANCE COMPARISONS WITH DIFFERENT METHODS 

Methods Se Sp F1-score ACC 

MLP + HOG 91.5% 83.1% 92.5% 89.2% 

RF + HOG 91.4% 87.6% 93.3% 90.4% 

SVM + HOG 93% 68.1% 90.8% 86.2% 

1D CNN 97.1% 93.5% 97.6% 96.6% 

2D CNN + STFT 98.9% 96.7% 98.8% 98.3% 

E.  Compare with Other works 

Table IV shows the comparison results with other methods, 
it can be seen that the proposed model in this paper has higher 
accuracy, and its value can reach 98.3%, while the 
corresponding value of other references is 83% - 95.2%. In 
addition, the sensitivity and specificity are higher than most 
methods. What’s more, the model in this paper is verified on 
the data of 102 people and 600s per person, which will be 
slightly larger than the data in most papers. In Ref. [8], the 
accuracy is 95.2%, but the data size is 1055 segments. 

TABLE IV.  PERFORMANCE COMPARISONS WITH OTHER WORKS 

Papers Year Dataset Subjects Se Sp ACC 

Ref. [7] 2011 
104, 
60s 

13 89% 77% 83% 

Ref. [8] 2012 
1055, 

6s 
104 99% 80.6% 95.2% 

Ref. [9] 2014 / 15 84.3% 91.5% 88.5% 

Ref. [10] 2016 
104, 

60s 
/ 84% 83% 83% 

Ref. [12] 2020 
12876, 

7s 
20 91.8% 87.3% 89.9% 

Proposed 2021 
5804, 

10s 
102 98.9% 96.7% 98.3% 

IV. DISCUSSION AND CONCLUSION 

As far as we know, this is the first paper to use deep 
learning methods combined with STFT time-frequency 
spectra for signal quality assessment of PPG signals. The CNN 
model takes STFT images as input and gives good or bad 
quality results. The proposed method is validated on a dataset 
of 102 people and 600 seconds of PPG data for each person. 
The model achieved good results with an accuracy of 98.3%, 
a sensitivity of 98.9%, a specificity of 96.7% and an F1 score 
of 98.8%. 

The model has better performance than machine learning 
algorithms such as MLP, RF and SVM, as well as 1D CNN. 
The model also has higher accuracy compared to the 
algorithms proposed in other papers. In terms of HR 
evaluation, the standard deviation of the high-quality PPG 
signals is lower than that of the poor-quality signal. The HR 
error is also much lower with reference to the ECG signal. This 
proves that the proposed network architecture can help 
researchers to obtain reliable estimates of physiological 
parameters from PPG signals. More importantly, the method 
can also be applied to similar time series conditions, such as 
ECG signals and arterial blood pressure (ABP) signals. 
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