
 

Abstract— Application of flexible robotic systems and 
teleoperated control recently used in minimally invasive 
surgery have introduced paradigm shift in interventional 
surgery. While Prototypes of flexible robots have been 
proposed for surgical diagnostic and treatments, precise 
constraint control models are still needed for flexible pathway 
navigation. In this paper, a deep learning based kinematics 
model is proposed for motion control of flexible robots. Unlike 
previous approach, this study utilized the different layers of 
deep learning system for learning the best features to predict 
the damping value for each point in the robot’s workspace. The 
method uses differential Jacobian to solve IK for given targets. 
Optimal damping factor that converges precisely around given 
target is rapidly predicted by a DNN. Simulation of the robot 
and implementation of the proposed control models are done in 
V-rep and Python. Validation with arbitrary points shows the 
deep-learning approach requires an average of 26.50 iterations, 
a mean error of 0.838, and an execution time of 3.6 ms for IK of 
single point; and converges faster than other existing methods.  
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I. INTRODUCTION 

Open surgery, a traditional technique for interventional 
surgery, has been remarked with limitations that galvanized 
the development of minimally invasive surgery (MIS). The 
latter has developed better in recent time that interventional 
surgery has reached a tipping point with minimized hospital 
stays, perioperative and recovery times, and post-surgical 
pains in patients [1]. MIS procedures involve manipulating 
surgical end-effectors with flexible navigators through 
minimal ports incised on patient’s body for interventional 
procedures. This modern approach has been reported to aid 
surgeons in carrying out a range of diagnostic, therapeutic, 
and rehabilitative procedures. Needs of real-time navigation 
and vision during cardiac and abdominal interventions have 
been an important domain with research focus since onset of 
MIS. While, efficient and ergonomic use considerations have 
been addressed by distally attached surgical and visualization 
tool appendages on flexible endoscopic or endovascular 
tools, however highly dexterous robotic mechanism with 
enhanced constraints control model and feedback systems 
are required to access core-hidden organs in human cardio-
thoracic areas during teleoperated MIS. This can enhance 
clearer views of the internal environment where surgery is 
intended to be performed [2].  

Continuum and snake-like robotic systems have recently 
appeared as a perfect fit for carrying out interventional 
surgery through flexible anatomical pathways. Some studies 
have reported the application of flexible link-based robots for 
intraluminal procedures on internal organs in both upper- and 
lower torso of human abdomen. Ota et al. designed a highly 
articulated robotic surgical system for pericardial therapeutic 
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delivery with minimal invasion [3]. Salle et al. proposed a 
highly modular MIS for coronary artery bypass grafting [4]. 
In pre-clinical study, a related robotic system was used to 
navigate and visualize some landmarks encountered during 
oropharyngeal surgery in cadavers [5]. These snake-like 
mechanisms are made-up with connected serial links for 
minimal invasion procedures. Each link has a small diameter 
(Ø 2 cm) and rotates around unique axes [6]. Dexterity are 
enhanced by each added link introducing extra degrees of 
freedom (DoF) while designs with limited or no-offset joints 
further enhances the dexterity of the robots for MIS [7]. 
Constraints modeling of kinematics and dynamics systems 
for motion and teleoperation control of the robotic systems 
require costly and complex computations with stable 
guarantee for existence of constraints resolution [8].  

Recent survey of studies on constraints modeling and 
control of MIS robots shows [6], kinematics and dynamics 

constraints resolutions for articulation of link-based robots 
are classified as closed-form and iterative methods. This is 
somewhat different bio-inspired continuum and soft robots 
also involve segmental-based curvature computations. Both 
are based on Jacobian analysis and segment mapping between 
robots’ Cartesian and joint spaces. Intelligent mappings 
modeled on Denavit Hartenberg (DH) notations have been 
proposed for solving control problems in flexible robotics. 
Agarwal [9] applied AI-based Fuzzy C-means approach for 
planning trajectory of a 4-DoF redundant manipulator. The 
clustering model was based on weighted within-scatter and 
between-cluster metrics of robot, while manipulability index 
was used as performance criterion. Chen et al. [10] proposed 
a 3D neural model for safety-enhanced trajectory navigation 
with minimum sweeping area factor in robot’s workspace. In 
surgical domain, genetic algorithm was proposed for 4-DoF 
i
2
-Snake robot based on pre-recorded suturing and anatomical 

data [11]. Damped least-squares (DLS) approach, a known 
stabilizer of pseudoinverse at near-singular points, has been 
reclined to introduce deep learning for constraints control in 
flexible robots. Use of reinforcement learning and policy 
optimization was investigated for kinematics of 5-DoF robot 
with joint, velocity, and pose limitations [12]. Omisore et al. 
[13] proposed a deeply-learnt model for kinematics 
resolution of surgical snake-like robots. Wang et al [14] also 
implemented the model to optimize kinematics solution of 7-
DoF Kuka robot. While this model is capable of predicting 
unique damping factors required for accurate kinematics of 
most target points in the robots workspace, effective deep 
learning network model with deep convolution, optimization, 
and regularization layers are deemed for improved prediction. 

In this study, kinematics model is proposed based on deep 
learning for motion control of flexible robots used in MIS. 
Remainder of this paper is organized that. Section II presents 
kinematics structure and modeling of n-DoF snake-like robot 
and an encoder-decoder deep learning model proposed for 
kinematics resolution; model implementation, experiments 
and validation results are discussed in Section III; lastly, the 
study conclusion and future works are stated in Section IV. 
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Fig. 1: CAD Model of the Snake-like Robot with 4-DoF. 

II. DEEP LEARNING MODEL FOR KINEMATICS CONTROL  

The targeted robot is a snake-like mechanism designed for 
MIS in human abdomen (Fig. 1). Details of the robot are in 
previous studies [6, 13-15]. This paper focuses on improving 
existing inverse kinematics approaches for constraints 
control and teleoperation of the snake-like robot. This 
includes enhancing Jacobian DLS method with deep learning 
for fast and accurate kinematics and dynamics resolution. 

A. Kinematics Modeling 

DLS approaches are renowned stabilizer of pseudoinverse 
of near-singular points in a robot’s workspace. Specifically, 
it has been used for numerical kinematics resolution [13-15]. 
This involves selection of constant damping factor that can 
be used to approximate solution of the Jacobian near-singular 
points. Starting from the base link of the model in Fig. 1, 
cumulative transformation of the coordinate systems of 
reference frame attached to each link are taken in forward 

direction. For an assumed pose ( ̂) of the last link (given as 

Fig. 1), a referenced transformation matrix (           
   ) with 

position (   
         ) and orientation (   

 
        ) can be 

derived based on DH parameters of the consecutive link 
[13]. The relationship between any frame * + from an initial 

frame * + for a given pose is defined with respect to origin  ̂, 
at the base. Thus, for a given joint vector ( ), DH parameters 
of the links are substituted directly to compute the single 
transformation matrix for a desired configuration; this can be 
evaluated to determine the final pose of the robot. The direct 
transformation in Eq. 1 computes pose of the last link which 
can be used for both analytical closed-form and iterative 
kinematics modeling [8]. Direct frame transformation is used 
in this study for learning-based kinematics modeling by 
integrating Jacobian damped least squares (DLS) method 
with deep learning system. Each transformation operation 
can be split as given in Eq. 2, showing the relationships 
between the rates of change of the final pose and joint [16]. 
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Fig. 2: Deep learning model for predicting damping factor 
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B. Jacobian-based DLS Modeling  

To model the nonlinear relationship, a damped least-
squares inverse of the robot’s Jacobian, with varying 
damping factor, is adopted. This approach involves 
expressing the differential kinematics of linear and angular 
velocities of the robot’s end-effector as a function of its 
joint-space velocities, to avoid numerical instabilities and 
kinematic singularities in the robot’s workspace. With first-
order partial derivatives, IK of the snake-like robot with n 

links can be approximated as  ( ̂)    (
  ̂ 

   
); where 

  ̂ 

   
 is the 

linear velocity of the frame pose in each    -axis (that is  -  
 -, and  -axis) with respect to change in     joint.  

Hence, the kinematics problem becomes finding the best 

joint vector   ,             -
  in ( ( ̂)    ⃗   ) such 

that    circa a desired target point,   . The Jacobian matrix 
in Eq. (3) is iteratively updated with angles in the robot’s 
joints until the kinematic error ( ⃗) is approximately equal to 
zero, in Eq. 4. However, to solve the equation, we seek for 
an optimal change (  )  that minimizes ‖     ⃗‖  such 

that the matrix  (     ) is a projector on the null space of 
   Therefore, the solution vector    can be evaluated Eq. 3. 
Following Buss & Kim [17], since     is computationally 
inexpensive and guaranteed to be invertible when   has a full 
row rank, the objective becomes finding the minimum-norm 
of the joint speed that minimizes ‖     ⃗‖  such that the 
end-effector can be numerically stable near a singular point. 
With the DLS model in Eq. 4, the kinematics problem is 
reduced to finding suitable damping values ( ) that steadily 
minimize the sum of norms of the solution vector and joint-
vector of the robot for any given point in a given workspace. 

     (   )   ⃗                      ( ) 

     
      
  

*‖     ⃗ ‖     ‖  ‖ +                      ( ) 

C. Prediction of damping factor with deep learning 

Since the differential kinematics solution is ill-conditioned 
in neighborhood of singular points, and this is experienced in 
the form of high joint velocities. Stability can be enhanced 
with prediction of appropriate damping factor. For this, a 
deep learning network (Fig. 2) with separate encoding and 
decoding modules is developed for predicting apt   values.  

i) Encoding Module: this includes convolutional blocks 
and softmax dense layers that multiplex features of given 
target points and re-construction of this information into 
salient values based on topography of the given point in the 
workspace. Unlike in our previous architecture [14], the input 
layer of the proposed deep learning model accepts inputs via 
seven units. The neurons accept features of a given point (  ) 
defined as its axial coordinates (  

    
 
   

 ) and tangential 

norms (‖  
 ‖ ‖  

 
‖ ‖  

 ‖       ) from an initial point. The 

variables are added to get the network aware of the robot’s 

workspace topography; such that relationships between initial 
and target points in the workspace could be quantified. Thus, 
input maps of 1 7 feature vectors were produced and passed 
across to the two convolutional blocks. Each block performs 
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convolution operations (8 filters, kernels size of 3, stride of 
1, and same length padding), followed by batch normalization 
to ensure the network processes tensors faster, and initial 
max pooling operations. Instead of having predetermined 
slope, a rectified linear unit is used to allow a small gradient 
for inactive cases. A final block with global average pooling 
is added for smoothening. A dense with dropout layer is 
added to regularize extracted features and reduce overfitting.  

ii) Decoder Module: a fully-connected dense layer 
with Softmax activation was taken to extract the network’s 
weights and biases and predicts apt   values for given target 
points. The input of the decoder module is a 64-sized feature 
vector map. The Softmax layer generalizes the binary form 
of logistic regression by mapping the feature‒sets extracted 
from the input given target points   ,             - to 
fit   values via a linear function  . The operation involves 
dot product of    and the weight matrix   and produces the 
actual probability scores, as given in Eq. 3. If the probability 
score is construed as unnormalized log equivalent, the loss 
function is swapped with Softmax regression function 
without the negative log likelihood of predicted  . Thus, the 
loss function in Eq. 5 is used in the Softmax layer to predict 
the value of   for a given target position. Worth mentioning,  

  (    )  is a natural logarithm used for inverse of the 
exponentiation. The actual exponentiation and normalization 
via sum of exponents is the Softmax function.  

 (    )                    ( ) 

 (   (    ))  (
  
(    )  

∑   (    ) 
⁄ )              ( ) 

D. Kinematics Resolution 

Finally, the optimal joint-vector (  ) is determined with 
the predicted   value, unique minimizer for norm of the 
damped joints’ velocities for the given target point in the 
workspace. For inverse kinematics,    in the DLS model is 
obtained as given in Eq. 6, and can as well be supplied into 
the transformation matrix (Eq. 1) based on the DH notation 
for forward kinematics solution. The fast kinematics solution 
can be utilized for dynamics analysis described in Ref. [15]. 
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III. MODEL IMPLEMENTATION AND VALIDATION 

A. Robot Simulation 

The flexible snake-like robot model in Fig. 1 was designed 
in Solidworks

®
 (Dassault Systems Solidworks Corp., USA), 

exported via unified robot description format for real-time 
simulation within V-Rep (Coppelia Robotics, Switzerland). 
For interactive operations, the robot’s joints and links were 
imported separately, assembled and parameterized in V-Rep. 
The components were manipulated with custom Lua scripts 
embedded in Python implementation of the network model 
via dynamic link library to achieve threaded communication. 

B. Deep Learning Model Training 

The encoder-decoder model was implemented with Keras 
interface and Tensorflow framework on a desktop computer 
with Intel® Core i7 processor (3.4 GHz each), 48 GB RAM 
and Nvidia GTX 1080 graphics card. End-to-end network 
training was implemented for appropriate feature extraction 
and prediction of damping (λ) values for given target points. 

  
Fig. 3: Training performance of the proposed network  

Complete workspace of an 8-DoF robot, simulated in 
Matlab, was used to generate a huge training dataset which 
has a dimension of 485315 8 [13]. It includes the axial 

coordinates (  
    

 
   

 ), norm (‖  
 ‖ ‖  

 
‖ ‖  

 ‖       ) 
and best damping factor (  ) for all points in the workspace. 
The dataset was randomly partitioned to 60%, 20%, and 20% 
for training, validation, and testing the network, respectively. 
Network tuning was done randomly during training to obtain 
the best hyperparameters. The convolutional blocks in the 
network were activated on ReLU with constant kernel size of 
3, and the respective filter numbers were 64. Fig. 3 shows the 
network has a suitable regularizing effect with reduced 
generalization error of 50% layer dropout rate. Adaptive 
moment (adam) optimizer was used for network training. 
Parameters set were dynamic learning rate initialized of 
    , a decay value of     , and recurrent dropout  of 10% 
added for regularization. Mini-batches of size 128 were 
employed to avoid GPU-CPU memory transfers while the 
initial split layers were run in 400 epochs to extract features.  

C. Experimental Results 

To assess the proposed deep learning model for kinematics 
constraint control, target positions were selected in the 8-DoF 

robot’s workspace and set as the model’s input. The desired 
operation is to obtain joint angles that can set the robot tip to 
each target position in a move. Hence, a circular path with 
desired trajectory was set and its consecutive points were 
taken as input of a custom function in Python. Coordinates of 
the points and axial Euclidean norm values, computed from 
the former, are taken by the function. The trained network 
model employs these parameters to predict the best damping 
factor ( ) needed to precisely solve Eq. 13 for the angular 
values. Finally, the joint values obtained are communicated 
back to the simulated robot via the remote API client script. 
Thus, the simulated snake-like robot reflects every point-to-
point motion command issued while the kinematics accuracy 
and response time can be calculated for evaluation purposes. 

For each point, each joint of the robot is rotated based on 
angles computed with the proposed method and displayed 
with the customized user interface designed in V-Rep. Results 
obtained for six arbitrary points in the robot’s workspace are 
shown in Fig. 4. It can be observed from the figure that the 
proposed method could determine appropriate angular joint 
values for each target point. Qualitatively, this indicates that 
the proposed method exhibits useful accuracy for kinematics 
resolution needed in flexible robotics control. 

D. Evaluation Results 

Accuracy and execution time are two main metrics that 
are usually used for evaluating kinematics control methods. 
While most existing methods are unable to achieve both high 
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kinematics accuracy and fast response time simultaneously, a 
few existing models were rated very high in previous study. 
Thus, performance of the proposed kinematics resolution 
method is compared with those of some existing Jacobian-
based methods. These include the deeply-learnt damped least 
squares (DL-DLS), singular value decomposition of Jacobian 
with damped least squares (SVD-DLS), and the conventional 
Jacobian damped least squares (J-DLS). These methods are 
proposed towards fast and accurate kinematics resolution in 
robotics. Since SVD-DLS and J-DLS lack a learning system 
of choosing damping factor, a unique         was used in 
this study. Design and implementation details of the methods 
have been reported [13]. In this study, performances of the 
methods are evaluated with kinematics accuracy, reachability 
measure, number of iterations, and execution time. The 
evaluation results obtained for each performance metric, 
based on threshold values; maximum iteration of 500 and an 
admissive kinematic error of 1 mm, are presented in Table 1. 
The proposed IK method converges faster than other existing 
DLS-based methods and requires a mean of 26.50 iterations 
and execution time of 3.6 ms to solve IK of a data point. This 
is slightly lower that the number of iterations required by the 
other methods. Performance of J-DLS can be improved by 
increasing the maximum number of iterations. 

IV. CONCLUSION AND FUTURE WORKS 

Recent developments in robotic surgery include design of 
flexible mechanisms to enhance surgical interventions such 
as suturing, tumor resection, and radiosurgery. Nonetheless, 
precise constraint control models are still lacking for flexible 
pathway navigation. In this paper, a deep learning based 
kinematics model is proposed for motion control of flexible 
robots. Unlike previous approach, this study utilized the 
different layers of deep learning system for learning the best 
features to predict the damping value for each point in the 
robot’s workspace. The proposed study is targeted towards 
controlling flexible robotic system used in MIS. Thus, 
effective computation of the constraints control is necessary 
for motion and trajectory tracking. Case study of flexible 
snake-like robot with 8 redundant links was carried out. The 
simulation results shows better kinematics solution can be 
obtained with deep learning model compared to using 
conventional machine learning and mathematical 
approaches. With admissible kinematic error of 1 mm and 
maximum iteration of 500, the proposed method converged 
faster to the given target points in the evaluation dataset.   

 

 

Fig 4: Results obtained for arbitrary points in the robot’s workspace 

Table 1: Performance evaluation of proposed and existing DLS methods* 

Sample Target Position 
Kinematics Error (mm) 

Proposed DL-DLS SVD-DLS J-DLS 

-33.109 -52.032 -125.433 0.974 0.977 0.995 90.812 

172.910 152.120 101.260 0.887 0.881 0.881 90.812 

90.0630 -25.077 -110.417 0.888 0.759 0.726 90.812 

19.630 -87.720 -11.540 0.900 0.920 0.940 90.812 

-23.416 -54.531 131.820 0.422 0.944 0.944 90.812 

214.920 -1.4307 -107.750 0.957 0.804 0.845 90.812 

Average Iteration Taken 26.500 35.667 86.500 
 

500 

* Results were obtained at 1 mm admissible error and 500 iterations for  

Finally, further studies are aimed by modifying the 

network structure to improve its performance, and to further 

lower the kinematics error for precise sub-millimetre robotic 

navigation. 
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