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Abstract— The optical measurement principle photoplethys-
mography has emerged in today’s wearable devices as the
standard to monitor the wearer’s heart rate in everyday life.
This cost-effective and easy-to-integrate technique has trans-
formed from the original transmission mode pulse oximetry for
clinical settings to the reflective mode of modern ambulatory,
wrist-worn devices. Numerous proposed algorithms aim at the
efficient heart rate measurement and accurate detection of the
consecutive pulses for the derivation of secondary features from
the heart rate variability. Most, however, have been evaluated
either on own, closed recordings or on public datasets that
often stem from clinical pulse oximeters in transmission instead
of wearables’ reflective mode. Signals tend furthermore to
be preprocessed with filters, which are rarely documented
and unintentionally fitted to the available and applied signals.
We investigate the influence of preprocessing on the peak
positions and present the benchmark of two cutting-edge pulse
detection algorithms on actual raw measurements from reflective
mode photoplethysmography. Based on 21806 pulse labels, our
evaluation shows that the most suitable but still universal filter
passband is located at 0.5 to 15.0Hz since it preserves the
required harmonics to shape the peak positions.

I. INTRODUCTION

Wearable devices have become increasingly popular, par-
ticularly in the form factor of wrist-worn fitness trackers
and smartwatches. At the same time, photoplethysmography
(PPG) has been established as the standard technique for
monitoring the wearer’s heart rate (HR), one of the human’s
primary vital signs. Originally introduced by Hertzman [1]
in 1937, the simple optical measurement principle enables
the non-invasive measurement of HR and peripheral oxygen
saturation. Since then, pulse oximeters are present at regular
wards in clinical settings and apply transmission mode PPG,
usually at the fingertip or earlobe, which emits light at one
side of the perfused tissue and measures the amount of trans-
mitted light at the opposite side. In contrast, the reflective
mode, utilized in today’s wearable devices, detects the non-
absorbed but scattered light from the superficial layers of
the skin. In both modes, the signal directly obtained from
the sensor is inversely proportional to the captured blood
volume changes in the skin. It is, however, common practice
to invert the signal amplitude during preprocessing, to be
consistent with the associated arterial blood pressure (ABP),
which regularly leads to confusion [2], [3], [4].

In research, and especially in field studies with numerous
devices, the Empatica E4 [5] has been established as a
popular and commercially available tool for the monitoring
of vital signs over long term [6]. Besides the early detection
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and diagnosis of heart diseases in medical studies, secondary
features from the heart rate variability (HRV), derived from
the pseudo-periodic heartbeat, have shown to be linked to
the wearer’s emotions and affective state [7]. The evidence
of the findings is, however, biased and limited to signals from
specific devices such as the aforementioned E4.

For researchers, it is comfortable to obtain the measure-
ments from such embedded sensors: The signals are usually
straightforward to interpret and analyze, since they come
already conditioned and preprocessed (Fig. 3, middle). To
the inexperienced observer from disciplines other than signal
processing, the sensing devices seem to deliver proper raw
signals because they come directly from them. However,
the embedded software of commercial wearables is usually
closed, not adaptable, and hence limits the signal’s informa-
tion content as well as possible applications. The use of ac-
tual raw sensor data would demand for more knowledge and
effort from the researcher, but also allows for customization
to meet individual, research-specific requirements.

In context of the extraction of the respiration rate from
PPG signals, Pimentel et al. [8] emphasize that “Future stud-
ies should concentrate on the use of [...] raw data sources
as a benchmark for comparison”. However, in a review of
public datasets [4], we have revealed that, although adver-
tised as such, most datasets do not actually contain raw but
conspicuously filtered signals. For this reason, most large
and promising datasets are not suitable to benchmark avail-
able algorithms or even to determine optimal preprocessing
parameters. Likewise, Reiss et al. [9] state that “State-of-the-
art publications rely mostly on the two datasets introduced
for the IEEE Signal Processing Cup” [10], [11] (Fig. 3, top),
which do not contain actual raw PPG signals [4], and found
that “existing approaches are highly parametrised and opti-
mised for specific scenarios of small, public datasets”.

This study aims at deeper understanding of the raw PPG
signal’s characteristics, directly obtained from the sensor,
to pave the way for more universal, reliable, and accurate
sensor-integrated algorithms, running on wearable devices.

In this paper, we make the following contributions:
• We provide 21806 labels, manually set and validated by an

expert rater, for the public dataset of Biagetti et al. [12] that
contains 286 minutes of raw, reflective mode PPG record-
ings from seven subjects during three different exercises.

• We benchmark the two popular, cutting-edge algorithms of
Karlen et al. [13] (2012) and van Gent et al. [14] (2019).

• We investigate the influence of preprocessing on the peak
positions and hence the performance of these algorithms.
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Fig. 1: Frequency components present in raw PPG signals.
Frequency bands: fundamental frequencies of heart rate (HR)
and respiration rate (RR) according to [15], [16]; DC offset
and 1/f fluctuations [17] (DF); general noise and distur-
bances through daily motion [18] (MA). Natural limits of
HR and RR change with the age from infants and children to
adults (solid lines). Overlapping areas are critical since they
are hard to distinguish and to assign [18]. Y-axis unspecified.
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Fig. 2: Review of 14 publications. Distribution of applied
filter cutoff frequencies: lower corner (high-pass, HP) and
upper corner (low-pass, LP), in respect of respiratory (RR)
and cardiac (HR) bands (see Fig. 1). Ref.: [11], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31].

II. RELATED WORK

We first introduce the most common methods to detect the
pulse in PPG signals. Afterwards, we briefly survey applied
preprocessing strategies before we lead over to a review and
discussion of previous research on the optimal conditioning
and filtering of raw PPG measurements.

A. Methods for Heart Rate Monitoring

In general, most available algorithms for HR determination
from PPG signals can be divided into two major categories:
time domain and frequency domain approaches. In time
domain, the individual, consecutive pulses of the heartbeat
are identified by means of significant fiducial points. The
diastolic pulse onset is the most common one, but also other
characteristic points have been subject to evaluation and
show slightly different applicability and accuracy [32], [33].
In the end, the HR can be determined either by counting
and averaging the number of peaks per unit time, or by
directly calculating the individual reciprocal of the inter-beat
interval (IBI) for an instantaneous measure [34]. In contrast,
approaches in frequency domain often aim for the application
in resource-constrained systems. They aggregate and charac-
terize a longer signal period of several seconds to minutes
by means of a decomposition method or transformation
function [35], [36]. Besides advanced techniques for spectral
estimation [11], [25], the most frequently applied ones are
the fast Fourier transformation (FFT) and Welch’s method
for a smoothed periodogram. The fundamental frequency,
associated with the predominant (not average) HR, is then

identified within the signal’s frequency spectral representa-
tion and validated through different heuristics. This shortcut
prevents these approaches, however, from the derivation
of secondary information such as the heart rate variability
(HRV) metrics [37], [38], the tachogram, or the interval
function [39]. Since modern wearable applications demand
for these measures, this research concentrates on HR tracking
algorithms applied in time domain. Before the pulse feature
detection and validation takes place, usually preprocessing
and motion artifact removal stages are applied [19], [40].

Preprocessing: As illustrated in Fig. 1, the spectrum of
raw PPG signals is composed of diverse superimposing fre-
quency components. Although the bands of heart rate (HR)
and respiration rate (RR) are limited by nature, it is not ad-
visable to use filters with fixed passband limits to extract the
components [18]. The plausibility of frequencies’ occurrence
highly depends on the individual and there is no consensus
on optimal, generalized ranges [41]. For adults, the bands
typically range from about 0.833 to 3.333Hz (50–200 bpm)
for HR and about 0.133 to 0.667Hz (8–40 bpm) for RR.
In the age of infants to young adults, the spectra for HR
and RR range from 0.5 to 3.0Hz (30–180 bpm) and 0.667
to 0.9Hz (40–54 bpm) respectively [15], [16]. Consequently,
the universal cardiac and respiratory frequency bands, for
both infants and adults, overlap. The separation of the desired
signal components from in-band noise, especially motion
artifacts from daily activities such as walking and jogging
(1.0 to 2.5Hz), becomes even more challenging [18], [40].

The artifact-free raw PPG signal (Fig. 3, bottom) is dom-
inated by a large DC offset while the AC signal amplitude
comprises only about 1–10% of the total scope [42], [43].
Depending on the ADC’s resolution, typically ≥ 16 bit, the
digital representation and storage of measurements requires
a lot of memory. The simple elimination of the DC offset,
often taken as unnecessary, easily reduces the extent.

The raw signal contains also other frequency components
that are usually not of interest and removed by signal condi-
tioning and preprocessing techniques. It is general standard
to limit the signal’s spectral bandwidth by any type of band-
pass filter, of which the Butterworth is the most common one.
The passband’s lower fc,hp and upper fc,lp cutoff frequencies
are defined through successive high-pass and low-pass filter
stages (depicted in Fig. 5). The low-pass stage rejects noise
at higher frequencies which hinder the accurate detection
and localization of the small AC pulse peaks. At the same
time, the natural baseline wander of the physiological signal
contains low-frequency components [17], [37], [39] which
blur and smear the pulses along steep and large slopes. Thus,
the high-pass filter stage is applied to detrend the signal and
to remove e.g. the RR fluctuations [8], [15], [22]. Particularly
the first ten harmonics of the fundamental HR shape the
pulse waveform and need to be preserved [20], [44]. Fig. 2
illustrates the widespread distribution of utilized cutoff fre-
quencies from 14 publications. In previous research, we have
reviewed commonly applied conditioning and preprocessing
strategies [4] and have further investigated the influence of
the sensor’s sampling rate on the HR determination [35].
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Fig. 3: Typical excerpts from CapnoBase [10], [45] (top),
WESAD [7] using the popular Empatica E4 [5] (middle), and
the MAXREFDES100# [12], [46] (bottom). Close-up (left),
30 s window (middle), respective frequency spectrum (right).
Preprocessed, smoothed, and zero-centered (top and middle).
Actual raw signals from reflective mode PPG (bottom).

Motion Artifacts: In any application for the conscious hu-
man, especially during physical activity, the loosely attached
sensor captures motion-induced distortions which result from
hemodynamic effects, slight sensor displacements, and tissue
deformation [47]. The occurring interference and artifacts,
typically observable as abrupt changes, affect the desired
pulsatile signal and impede the application of simple algo-
rithms: threshold-based approaches using derivatives, moving
averages, or the slope sum function [21] and relics from ECG
analysis [48]. The identification, exclusion, or even removal
of motion artifacts remains the biggest challenge and has
most recently been surveyed by Ismail et al. [40]. Besides
approaches assessing the pulse morphology and applying
adaptive filters in time domain [13], others analyze signals
from auxiliary sensors, mostly accelerometers [23], [31] but
even optical flow sensors known from computer mouses [49].

B. Studies on Optimal Preprocessing and Filtering

In recent years, there has already been research aiming at
the identification of optimal techniques and filter parameters
for the preprocessing of PPG signals. Those studies did,
however, not lead to a clear consensus. They either targeted
specific applications or comprise weaknesses which we now
intend to address with our research.

In 2012, Stuban et al. [44] evaluated the optimal filter
bandwidth for pulse oximetry (SpO2), which traditionally
applies transmission mode PPG. The research concentrated
on the estimation of the arterial oxygen saturation from
the ratio of measurements at two different wavelengths, red
and infrared light, sampled at 40Hz. They concluded that
the “harmonics of the pulse signal do not contribute to the
accuracy of pulse oximetry” and consequently “filtering out
the harmonics [...] does not degrade the accuracy”. The DC
and very low frequency components have been removed by
a 2nd order infinite impulse response (IIR) high-pass filter.
The lower cutoff frequency was set to 0.1Hz and “must be
lower than the fundamental frequency of the pulse”. Noise
and harmonics of the pulse have been removed by a 100th

order finite impulse response (FIR) low-pass filter and five
upper cutoff frequencies at 0.66, 1.0, 1.5, 3.0, or 15.0Hz.

In 2018, Liang et al. [50] published an impressively large
dataset of 657 PPG snippets, captured at the left index fingers
of 219 subjects. Since the recordings are very short, just 2.1 s
long, the dataset’s applicability is limited. Based on a selec-
tion of 219 pulses, classified as “excellent”, “acceptable”, and
“unfit”, they determined the 4th order Chebyshev II to be the
optimal filter technique – at least for these short signals.

Most recently, in 2020, Cassani et al. [51] analyzed the
spectral coherence and the signal-to-noise ratio between
“isolated” and the original, “raw” pulses. They determined
the optimal filter passband to be 0.6 to 3.3Hz for adults
and 1.0 to 2.7Hz for children. The spectral analysis showed
a half-power bandwidth of 0.8 to 2.4Hz for adults and of
0.9 to 2.7Hz for children. The study analyzed 27000 pulses
from the well-known CapnoBase IEEE TBME [10], [45]
(Fig. 3, top) dataset containing signals from a fingertip pulse
oximeter, but not raw, reflective mode PPG signals [4].

In 2019, Bastos et al. [52] investigated the optimal param-
eters for Butterworth and maximal overlap discrete wavelet
transform (MODWT) filters which are “widely employed” in
resource-constrained wearables. Considering very few cutoff
frequencies, again a dataset from [45] (Fig. 3, top) and the
MIMIC-II BIDMC [8] were applied, both unfortunately not
containing actual raw signals from reflective mode PPG [4].

III. METHODS AND MATERIALS
We first introduce the used dataset and highlight the

preparation of ground truth. Subsequently, we investigate the
general pulse peak displacement due to filtering and then
benchmark two popular algorithms on filtered time series.

A. Dataset
Public datasets of actual raw signals from reflective mode

PPG sensors are scarce [4]. The adequate benchmark of
available algorithms and preprocessing techniques requires,
however, large datasets of such kind. In this research, we
decided for the very recent dataset of Biagetti et al. [12]
from 2020. It is originally intended for the application of
machine learning techniques in human activity recognition.
With in total 286 minutes of raw PPG measurements (Fig. 3,
bottom), it provides a set of 105 recordings from 7 subjects
wearing the MAXREFDES100# [46], a commercially avail-
able reference design. Simultaneous PPG and acceleration
signals, sampled at a rate fs of 400.0Hz, are provided for
the subjects performing three exercises: rest, squat, and step.
Hence, the time series are not entirely clean but contain
motion artifacts which do affect the applied algorithms.

An ideal dataset would uniformly cover the entire range
of the natural HR (30–200 bpm [15], [16]). This requirement
would, however, hardly be possible without a health risk for
the volunteers. As illustrated in Fig. 4, the used dataset covers
a broad HR spectrum of at least 40 to 160 bpm, with a strong
core area ranging from 50 at rest to 110 bpm at light exercise.
The three exercises show the mean HR of 72.9± 11.1 bpm
(1.22± 0.18Hz) for rest, 98.6± 16.0 bpm (1.64± 0.27Hz)
for squat, and 106.2± 21.2 bpm (1.77± 0.35Hz) for step.
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Fig. 4: Distribution of the seven subjects’ instantaneous heart
rate, derived from the inter-beat intervals (IBI) of manually
labeled pulses. Limited cardiac frequency band (red, Fig. 1).

B. Ground Truth

For every recording in daily life, the supply of ground
truth tends to be the major issue. Usually, a second sensing
device or even a second sensing modality is used to provide
the information with, at best, a higher degree of reliability
and precision. In case of the HR, wearable long-term ECG
devices are mostly employed since the electrodes are directly
attached to the skin and hence enable the reliable and robust
measurement, at cost of comfort. Unfortunately, the selected
dataset does not provide ECG as ground truth. The PPG
signal has thus manually been analyzed and annotated by a
human expert rater with year-long experience. Consequently,
the performance of the applied algorithms is not compared
against a reference device but the labels accurately set by the
expert. We hence demonstrate the theoretical limits by means
of the human and their ability to interpret PPG signals.

Data Annotation: For the purpose of the comfortable and
reliable annotation, we have developed a graphical tool which
allowed the expert rater to label the pulse onsets within the
raw time series. We consciously decided against an automatic
labeling or preselection to avoid the expert being influenced
and biased in their decision. Without a doubt, this decision
resulted in more and monotonous manual work – reams of
clicks to select the in total 21806 peaks. To prevent faults
due to fatigue, the expert has split the work up into one
subject per day, first the larger but easier-to-label data of
rest and, after a break, the shorter but ambitious recordings
of the squat and step exercises. In total 104 of 105 time
series, 278 of 286min (97.3%) are annotated with 21 806
peak labels, only 7.73min do not contain distinguishable
signals or are considerably affected by motion artifacts and
hence excluded. 88 of 105 time series are entirely labeled.
The subset squat 3 of subject 5 was rejected since it does
not contain any clearly distinguishable pulses.

While the ECG’s well-known R spike is pointed and hence
relatively ‘easy’ to identify, even in noisy signals, the typical
PPG waveform is rather smooth and round. Recorded at a
higher sampling rate [35], the raw PPG signal also shows
a large portion of noise and baseline wander which blurs
the optimal pulse peak and makes the identification of its
exact position ambiguous (see Fig. 5). Consequently, the very

top of the pulse is not always distinct but often subject to
interpretation. In contrast to deterministic algorithms, the
expert has, however, intuition, grounded in experience, to
‘see’ which tiny wave is an actual pulse onset and which
one is just negligible noise or motion-induced distortion.

To exclude the influence of filtering from the beginning,
the labels have been set within the raw signal before applying
any filter. A second panel allowed the expert, however, to
glance at the detrended and smoothed signal for orientation
and validation, to avoid the selection of any invalid pulses. A
4th order (2× 2nd) filtfilt forward-backward zero-phase band-
pass filter, passband 0.5 to 30.0Hz, was applied. Unnaturally
short or long IBIs have automatically been labeled as invalid
and were subject to revision by the expert. The remaining
uncertain intervals were finally excluded from the studies.

C. Study I: Peak Displacement

Filtering considerably changes the trend and shape of the
raw PPG signal. By narrowing down the passband, the peak
positions are conspicuously affected, smeared, and blurred
(see Fig. 5). In the first study, we investigated the influence
of filtering on the positions of pulse onsets [32], [33], the
maximum peaks in raw signals respectively. We applied a
4th order (2× 2nd) Butterworth band-pass filter with 40× 40
non-equidistant lower fc,hp and upper fc,lp cutoff frequen-
cies: { / , 0.005, ..., 2.5Hz} × { / , 199.0, ..., 2.5Hz}. The ap-
plied filtfilt forward-backward filter method with zero phase
allows to protect and preserve the signal’s original phase.
To track the peak displacement εd = |p0 − p̂|, we applied a
simple hill climbing algorithm to follow the original position
p0 up to the closest local maximum of the filtered signal at p̂,
implemented as a function p̂( fc,hp , fc,lp ). Any εd > 250ms
has been excluded as a slipped outlier.

Fig. 6 illustrates the mean εd results for the individual
exercises (left) which sum up to the averaged overall results
(right). The boundaries of the minimum error plateaus with
εd ≤ 0.5 samples (blue) are shifted (red arrows) due to
the increasing HR (vertical line) from rest (1.22Hz) via
squat (1.64Hz) to step (1.77Hz). Accordingly, an extended
fc,lp (y-axis) is required to cover a sufficient number of
harmonics, for an adequate contour and peak reconstruction,
but it also allows for a higher fc,hp (x-axis).
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Fig. 5: Left: Effect of diverse high-pass filters for detrending.
Right: Illustration of the pulse peak’s position (blue) dis-
placement due to the application of diverse low-pass filters.
Conspicuously affected, smeared, and blurred pulse contour,
vanishing with the baseline wander, due to the elimination
of the fundamental HR’s higher harmonics.
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Fig. 6: Evaluation results of the displacement error εd due to filtering at diverse lower fc,hp (x-axis) and upper fc,lp (y-axis).
Left to right: results of subsets rest, squad, step, and their overall mean. Shifting (red arrows) boundaries of minimum error
plateau εd ≤ 0.5 samples (blue) due to increasing HR (vertical). Proposed filter passband (magenta mark): 0.5 to 15.0Hz.

D. Study II: Benchmark of Algorithms

The results of the previous Study I serve as the upper
boundary of maximal achievable accuracy from filtered PPG
signals. To benchmark available algorithms and to investi-
gate the effect of preprocessing on their performance, we
applied two popular algorithms on the filtered time series:
1) Karlen et al. [13] from 2012 and 2) van Gent et al. [14]
from 2019. Those are based on two fundamentally different
principles to identify the pulse peaks in time domain.

To assess the algorithms’ performance, every position
p0 from the manual annotations is assigned to its closest
counterpart p̂a from the detected pulse peaks. If the error
distance |p0 − p̂a| ≤ 250ms, the pair (p0, p̂a) is classified
as true positive (TP). All missed p0 without a counterpart
p̂a within reach are classified as false negative (FN) while
the surplus of erroneously detected peaks falls into false
positive (FP). This approach enables to apply the popular
F1 -score (1), the harmonic mean of precision (PPV) and
recall (TPR) (2), to measure the peak detection performance.
For all pairs in TP, the average error distance εa = |p0 − p̂a|
is determined analog to the displacement error εd in Study I.

F1 := 2 · PPV · TPR
PPV + TPR

(1)

PPV :=
TP

TP + FP
, TPR :=

TP

TP + FN
(2)

In case of an algorithm’s ideal performance, the F1 -score
would hit 1.0 and εa would match the theoretical limit εd.
Since the local optima of F1 -score and εa can be conflicting
(see Fig. 7–8), a simple parameter optimization is applied to
find a trade-off by multiplying the two normalized metrics.

1) Karlen et al. [13]: Intended for usage on resource-
constrained devices, the algorithm consists of two stages.
First, the incremental-merge segmentation (IMS) algorithm
extracts the morphological features by segmenting and com-
pressing the signal into straight lines. It is implemented as a
sliding window of size m, which is the only parameter that
requires tuning, but also depends on fs. With a larger m the
algorithm is faster and less susceptible to noise, but the de-
termined peak positions are also less precise. Subsequently,
the extracted lines with positive gradient are classified as
artifact or valid pulse using simple adaptive thresholds. The
authors state that “No other filtering than the standard band-
pass filter applied by pulse oximeter manufacturers to remove
the DC component [...] is necessary”, but they do not specify

proven values. Before, the algorithm has been evaluated
using two datasets of which one is from CapnoBase [45],
from transmission mode pulse oximeters. Since the algorithm
regards the inverted pulse direction, consistent with the ABP,
the time series have been flipped before its application.

2) van Gent et al. [14]: The open-source HeartPy toolkit
aims for the computational efficient but particularly reliable
pulse detection independent from the utilized sensor. Besides
a comfortable Python library, an implementation for embed-
ded devices in C is also available. First, a moving average,
with a default window size w of 750ms (300 samples at fs),
is used to identify local maxima as a first selection of
candidate peaks. Since an excessive or missing single peak
significantly increases the standard deviation of successive
differences (SDSD), this measure is combined with the
constraint of the natural HR limits (40–180 bpm by default)
to stepwise adjust the threshold and hence to find the optimal
peak selection of minimal SDSD. To compare the algorithms’
performance, its validation heuristic is set to the previously
discussed natural HR limits of 30 to 200 bpm [15], [16].

IV. RESULTS & DISCUSSION

The optimal cutoff frequencies largely depend on the
subjects’ HR. At rest it is low while the frequency band
tends to be narrow (rest: 1.22± 0.18Hz). With increasing
activity, the HR increases and the frequency band widens
(squat: 1.64± 0.27Hz; step: 1.77± 0.35Hz).

Accordingly, Study I demonstrates that the most universal
and effectual filter passband ranges from the theoretical
minimum 0.5Hz of the natural HR to appropriate 15.0Hz.
As illustrated in Fig. 6, it is applicable for HR at rest as well
as during exercise such as squat and step. While the lower
fc,hp can be ‘easily’ estimated and fixed to the minimum
HR to be expected, the upper fc,lp is more critical and
difficult to specify. A generous fc,lp allows to cover more
harmonics of the fundamental HR, which eventually refine
the pulse contour. At a HR of 0.5Hz (30 bpm), the covered
29th harmonic is, however, not very gainful. Nevertheless, the
upper 15.0Hz cutoff is required to cover at least 3 harmonics
of a HR at 3.3Hz (200 bpm) – 10 harmonics would, however,
be ideal [20], [44]. A wider passband of up to 25.0Hz would
result in slightly more pointed and accurate peak contours but
also gives unnecessary space for high-frequency noise.

Study II demonstrates the very different character of the
two applied algorithms: 1) The algorithm of Karlen et al. [13]
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Fig. 7: Evaluation chain and results for the algorithm of Karlen et al. [13]. Left to right: mean optima of F1 -score, distance
error εa, fused parameter optimization, and window size m versus lower fc,hp and upper fc,lp. Local optima of F1 -score
and εa (blue). Optimal configuration (magenta): fc,hp of 0.9375Hz, fc,lp of 25.0Hz, and m of 34.236 samples resulting in
an F1 -score of 0.958 and εa of 3.037 samples. Relatively homogeneous plateau of possible parameters of similar quality.
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Fig. 8: Evaluation chain and results for the algorithm of van Gent et al. [14]. Left to right: mean optima of F1 -score, distance
error εa, fused parameter optimization, and window size m versus lower fc,hp and upper fc,lp. Local optima of F1 -score
and εa (blue). Optimal configuration (magenta): fc,hp of 1.125Hz, fc,lp of 10.0Hz, and m of 270.426 samples resulting in
an F1 -score of 0.970 and εa of 0.051 samples. Rather complex texture with abruptly falling peak of optimal parameters.

performed best with a small window m of 34.236 samples
(85.589ms) and a filter passband from 0.9375 to 25.0Hz.
The configuration results in an F1 -score of 0.958 and an εa
of 3.037 samples (7.594ms). Fig. 7 shows that the F1 -score
is optimal close to the fundamental HR but remains constant
along a varied upper fc,lp. The εa stays relatively steady
along the lower fc,hp until it passes the HR but increases
considerably along with a decreasing upper fc,lp. The m
is homogeneous and plane until it passes the HR along
the lower fc,hp. 2) The algorithm of van Gent et al. [14],
in contrast, performed best with a large window w of
270.426 samples (676.065ms) and a narrower passband from
1.125 to 10.0Hz. The configuration results in an F1 -score of
0.970 and an impressively small εa error of 0.051 samples
(0.127 µs). Due to the immense increase of peak candidates in
raw and noisy signals, accompanied by increasing processing
efforts, the evaluation in Fig. 8 is limited to fc,hp ≥ 0.5Hz.

Limitations: Because the used dataset does not provide
ground truth information, we had to rely on an experienced
expert rater to provide the annotations for the PPG data
afterwards, inadvertently being subject to some bias as well.
In case of peaks vanishing with the baseline, the identifi-
cation can be rather subject to interpretation than a distinct
recognition. Inaccuracies due to imperfect label placement
are, however, statistically compensated through the large
number of peak labels. The use of an ECG reference channel
would, without question, be expedient. Very low as well as
very high HR are underrepresented in this dataset. Follow-
up studies should focus on a broader HR diversity that spans
the entire range of the natural HR from 0.5 to 3.3Hz (30–
200 bpm [15], [16]). Also, since PPG at the wrist shows a
location-specific composition, the harmonics may contribute
differently to the pulse peak at other measurement locations.

V. CONCLUSIONS

Photoplethysmography is an emerging optical measure-
ment principle which reflective mode is the standard tech-
nique to monitor the wearer’s heart rate in wearable devices.
The resource constraints of these demand for high efficiency
while the applications require reliable and accurate pulse
detection for HRV measurements. Most available algorithms
have, however, been evaluated on just few publicly available
datasets of conspicuously filtered signals. In this research,
we highlight the importance of benchmarking on actual raw
PPG signals. Based on the dataset of Biagetti et al. [12]
and 21806 peak labels, manually annotated by an expert
rater, the impact of preprocessing on pulse peak positions
and the performance of peak detection algorithms has been
evaluated. Applying 40×40 filter configurations, two popular
algorithms are benchmarked: 1) Karlen et al. [13] from 2012
and 2) van Gent et al. [14] from 2019. In summary, algorithm
2) is more complex than 1) but, in absence of low-frequency
baseline wonder, its concept results in a significantly higher
precision. In general, the filter passband of 0.5Hz to 15.0Hz
showed the best universality by preserving the heart rate’s
harmonics for distinct and precise pulse peak positions.

We encourage researchers to use the publicly available
dataset of Biagetti et al. [12] in combination with the sup-
plementary annotations from this research to benchmark their
own algorithms as well as machine learning approaches. The
annotation files, provided as *.pkl and *.csv, of the 21806
diastolic pulse onset labels are available for download from:
https://ubicomp.eti.uni-siegen.de/home/datasets/embc21/

ACKNOWLEDGMENT

The large amount of data has been processed by the OMNI
cluster at the University of Siegen in Germany.

1162



REFERENCES

[1] A. B. Hertzman, “Photoelectric Plethysmography of the Fingers and
Toes in Man,” Experimental Biology and Medicine, vol. 37, no. 3, pp.
529–534, 1937.

[2] T. Y. Abay, “Reflectance Photoplethysmography for Non-invasive
Monitoring of Tissue Perfusion,” Doctoral Thesis, University of Lon-
don, 2016.

[3] C. Choi, B.-H. Ko et al., “PPG pulse direction determination algorithm
for PPG waveform inversion by wrist rotation,” IEEE EMBC, vol.
2017, pp. 4090–4093, 2017.

[4] F. Wolling and K. Van Laerhoven, “The Quest for Raw Sig-
nals: A Quality Review of Publicly Available Photoplethysmography
Datasets,” in DATA ’20. ACM, 2020.

[5] Empatica Inc., “Empatica E4 Wristband,” https://www.empatica.com/
research/e4/, accessed: 2021-03-31.

[6] C. McCarthy, N. Pradhan et al., “Validation of the Empatica E4
Wristband,” in IEEE EMBS ISC, 2016, pp. 1–4.

[7] P. Schmidt, A. Reiss et al., “Introducing WESAD, a Multimodal
Dataset for Wearable Stress and Affect Detection,” in ICMI ’18.
ACM, 2018, p. 400–408.

[8] M. A. F. Pimentel, A. E. W. Johnson et al., “Toward a Robust
Estimation of Respiratory Rate From Pulse Oximeters,” IEEE TBME,
vol. 64, no. 8, pp. 1914–1923, 2017.

[9] A. Reiss, I. Indlekofer et al., “Deep PPG: Large-Scale Heart Rate
Estimation with Convolutional Neural Networks,” Sensors, vol. 19,
no. 14, 2019.

[10] W. Karlen, S. Raman et al., “Multiparameter Respiratory Rate Esti-
mation from the Photoplethysmogram,” IEEE TBME, vol. 60, no. 7,
pp. 1946–1953, 2013.

[11] Z. Zhang, Z. Pi, and B. Liu, “TROIKA: A General Framework
for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic
Signals During Intensive Physical Exercise,” IEEE TBME, vol. 62,
no. 2, pp. 522–531, 2015.

[12] G. Biagetti, P. Crippa et al., “Dataset from PPG wireless sensor for
activity monitoring,” Data in Brief, vol. 29, 2020.

[13] W. Karlen, J. M. Ansermino, and G. Dumont, “Adaptive Pulse Seg-
mentation and Artifact Detection in Photoplethysmography for Mobile
Applications,” IEEE EMBS, vol. 2012, pp. 3131–3134, 2012.

[14] P. van Gent, H. Farah et al., “Analysing Noisy Driver Physiology Real-
Time Using Off-the-Shelf Sensors: Heart Rate Analysis Software from
the Taking the Fast Lane Project,” JORS, vol. 7, 2019.

[15] P. Dehkordi, A. Garde et al., “Extracting Instantaneous Respiratory
Rate From Multiple Photoplethysmogram Respiratory-Induced Varia-
tions,” Frontiers in Physiology, vol. 9, p. 948, 2018.

[16] S. Fleming, M. Thompson et al., “Normal ranges of heart rate and
respiratory rate in children from birth to 18 years of age: a systematic
review of observational studies,” The Lancet, vol. 377, no. 9770, pp.
1011–1018, 2011.

[17] M. Kobayashi and T. Musha, “1/f fluctuation of heartbeat period,”
IEEE TBME, vol. 29, no. 6, pp. 456–457, 1982.

[18] T. Tamura, Y. Maeda et al., “Wearable Photoplethysmographic
Sensors—Past and Present,” Electronics, pp. 282–302, 2014.

[19] C. Fischer, B. Domer et al., “An Algorithm for Real-Time Pulse Wave-
form Segmentation and Artifact Detection in Photoplethysmograms,”
IEEE J-BHI, vol. 21, no. 2, pp. 372–381, 2017.

[20] A. Kamal, J. B. Harness et al., “Skin photoplethysmography — a
review,” Comp. Meth. Prog. Biomed., vol. 28, pp. 257–269, 1989.

[21] W. Zong, T. Heldt et al., “An Open-Source Algorithm to Detect
Onset of Arterial Blood Pressure Pulses,” in Computers in Cardiology.
IEEE, 2003, pp. 259–262.

[22] P. H. Charlton, T. Bonnici et al., “An assessment of algorithms to
estimate respiratory rate from the electrocardiogram and photoplethys-
mogram,” Physiol. Meas., vol. 37, no. 4, pp. 610–626, 2016.

[23] E. De Giovanni, S. Murali et al., “Ultra-Low Power Estimation of
Heart Rate Under Physical Activity Using a Wearable Photoplethys-
mographic System,” in DSD 2016. IEEE, 2016, pp. 553–560.

[24] S. Lee, H. Shin, and C. Hahm, “Effective PPG sensor placement for
reflected red and green light, and infrared wristband-type photoplethys-
mography.” IEEE ICACT, 2016, pp. 556–558.

[25] D. Dao, S. M. A. Salehizadeh et al., “A Robust Motion Artifact
Detection Algorithm for Accurate Detection of Heart Rates From Pho-
toplethysmographic Signals Using Time-Frequency Spectral Features,”
IEEE J-BHI, vol. 21, no. 5, pp. 1242–1253, 2017.

[26] A. Temko, “Accurate Heart Rate Monitoring During Physical Exer-
cises Using PPG,” IEEE TBME, vol. 64, no. 9, pp. 2016–2024, 2017.

[27] A. Chatterjee and U. K. Roy, “PPG Based Heart Rate Algorithm
Improvement with Butterworth IIR Filter and Savitzky-Golay FIR
Filter,” in IEEE IEMENTech. IEEE, 2018, pp. 1–6.

[28] Q. Xie, Q. Zhang et al., “Combining Adaptive Filter and Phase
Vocoder for Heart Rate Monitoring Using Photoplethysmography
During Physical Exercise,” IEEE EMBC, pp. 3568–3571, 2018.

[29] H. Chung, H. Lee, and J. Lee, “Finite State Machine Framework for
Instantaneous Heart Rate Validation Using Wearable Photoplethys-
mography During Intensive Exercise,” IEEE J-BHI, vol. 23, no. 4,
pp. 1595–1606, 2019.

[30] N. Huang and N. Selvaraj, “Robust PPG-based Ambulatory Heart Rate
Tracking Algorithm,” IEEE EMBC, vol. 2020, pp. 5929–5934, 2020.
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