
  

 

Abstract— Conventional therapy improves motor recovery 

after stroke. However, 50% of stroke survivors still suffer from 

a significant level of long-term upper extremity impairment. 

Identifying a specific biomarker whose magnitude scales with 

the level of force could help in the development of more effective, 

novel, highly targeted rehabilitation therapies such as brain 

stimulation or neurofeedback. Four chronic stroke participants 

were enrolled in this pilot study to find such a neural marker 

using an Independent Component Analysis (ICA)-based source 

analysis approach, and investigate how it has been affected by 

the injury. Beta band desynchronization in the ipsilesional 

primary motor cortex was found to be most robustly scaling with 

force. This activity modulation with force was found to be 

significantly reduced, and to plateau at higher force than that of 

the contralesional (unaffected) side. A rehabilitation therapy 

that would target such a neuromarker could have the potential 

to strengthen the brain-to-muscle drive and improve motor 

learning and recovery. 

 
Clinical Relevance— This study identifies a neural marker 

that scales with motor output and shows how this modulation 

has been affected by stroke.  

I. INTRODUCTION 

Nearly 800,000 people experience a new or recurrent stroke 

each year [1] in the US alone, with  long-term, chronic upper 

extremity (UE) impairment affecting 40-70% of stroke 

survivors with devastating personal, social, and economic 

cost [2]–[5]. Conventional therapy improves motor recovery, 

but nearly 50% of patients still suffer from a significant level 

of impairment after rehabilitation [5], [6]. A plausible reason 

for the limitation of conventional therapies could be that they 

are premised on peripheral training to impact the central loss 

of function. , and thus require constant, repetitive, and intense 

effort to trigger sufficient neuroplasticity changes to achieve 

motor recovery [4] presenting a significant challenge to 

motivation, engagement, and compliance [7]. Neurofeedback 

(NF) and brain computer interface (BCI) are promising new 

approaches that can improve rehabilitation therapy through the 

goal of increasing excitability and neuroplasticity of the brain 

to improve motor learning and functional recovery [4], [8]–

[11]. 

One potential limitation of conventional NF/BCI is the 

modulation of a biomarker chosen based on its discriminant 

(such as between rest and motor imagery (MI)) rather than its 

therapeutic capability, which may not always lead to 
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functional gain [12]. The main concern is that motor-related 

EEG activity modulations are widespread throughout the 

brain and may be associated with various processes (based on 

the frequency band and location of activity) [13], [14], that 

may not be directly related to motor execution. Furthermore, 

most classifiers and approaches are binary where the NF 

algorithm training tries to maximize differentiation between 

two states such as between motor imagery and rest [15]. The 

identification and use of a specific biomarker whose 

magnitude scales with the level of motor output —the mental 

effort required to produce force in a motor task [16], could 

have greater benefit. However, it remains unclear if brain 

activity scales with force. While some have found such a 

relationship in terms of alpha/beta desynchronization, 

cortico-muscular coherence, or cortical potential [17]–[20], 

others have not during movement [21]. Furthermore, no 

studies have previously investigated how this brain-force 

linear relationship is affected by stroke given that the brain 

activities are diminished or altered [22], [23].  

In this current pilot study, we seek to find a neural marker 

that scales with force and investigate how this is affected by 

the stroke injury by comparing this brain-force relationship in 

the affected vs. unaffected side.  

II. METHODS 

A. Participants 

Four chronic stroke survivors (2 male, 2 female, age 58 ±9 

years) 2-3 years post-injury (ischemic or hemorrhagic) 

participated in the study. Three participants had a lesion in the 

right and one in the left hemisphere (Fig. 1). Inclusion criteria 

were age between 18-70 years, stroke onset at least six 

months, hand hemiparesis with some residual fingers flexion. 

Patients with severe wrist spasticity scores >3 (Modified 
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Figure 1.  Lesion location for all 4 participants. The lesion in red as a 
binary mask was extracted using the LINDA (Lesion Identification with 

Neighborhood Data Analysis) toolbox [31] on a T1-weighted MRI scan. 
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Ashworth Scale) were excluded. The study was approved by 

the Kessler Foundation Institutional Review Board. Hand 

function was evaluated with the 9-hole-peg test (9HPT) [24]  

and Box and Blocks Test (BBT) [25].  

B. Experimental Procedure 

First, the 9HPT and BBT was administered for both the 
affected and unaffected hand. Participants then participated in 
a handgrip task, where they were first asked to perform 3 to 5 
trials of Maximum Voluntary Contraction (MVC) for each 
hand using a handgrip dynamometer (Vernier, OR, USA) with 
1 min rest between contractions. Then, participants were asked 
to perform a series of handgrip contractions for 5s at 10%, 
30%, and 50% MVC, first for the left and then the right hand. 
Trials appeared in random order with an inter-trial rest period 
varying between 5-30s to avoid fatigue. Throughout the task, 
EEG brain activity (64-channel ActiCAP slim, BrainAmp 
Brain Products, Munich, Germany), and EMG hand muscle 
activity (16ch ExG BrainAmp) were continuously recorded at 
1000Hz from the main handgrip flexor/extensor (Extensor 
Digitorum (ED), Flexor Digitorum Superficialis (FDS), Flexor 
Digitorum Profundus (FDP), and Flexor Dorsal Interosseous 
(FDI)). 

C. Data Processing and Outcome Measurements 

EMG data was bandpass filtered (1-125Hz) using a fourth-
order Butterworth filter, and the root-mean-square envelope 
was computed using a moving 250ms average time window.  

Using the EEGLAB toolbox [26], EEG data were band-
pass filtered (1-50Hz) using a fourth-order Butterworth filter, 
average referenced after rejecting and interpolating bad 
channels, and downsampled to 250Hz before further analysis. 
The ASR Toolbox was used to clean the data. After epoching 
the data, independent components (IC) representing 
independent EEG source signals were extracted using Infomax 
and their equivalent dipole location was computed using 
DIPFIT with a standard circular MNI head model.  

ICs were subsequently classified using the IClabel plugin 
[27]. ICs labeled as brain signals localized within the brain and 
which explained more than 85% of scalp variance were 
retained. ICs were consistently found in temporal, occipital, 
parietal, sensorimotor, and premotor areas. EEG power 
spectrum density (PSD) for frequencies between 1-50Hz was 
subsequently computed (in dB) with respect to the common 
baseline across the three force level conditions, which we 
found critical to eliminate variations in baseline values that 
could mask the EEG-force relationship. Finally, the force-
brain activity (PSD) relationship was computed using a linear 
least-square fit across trials and force levels for all frequencies 
and brain components, to find the component and frequency 
band whose activity most consistently scale with force. 

D. Statistical Analysis 

Comparisons between affected vs. unaffected hand were 

performed using a simple paired t-test with a significant α 

level set at 0.05. 

III. RESULTS  

 The 9HP and BBT results in Table 1 show significant mild 

to moderate impairment in hand function in the affected vs. 

unaffected hand. MVC was significantly less in the affected 

than the unaffected hand (341±135 vs 163 ±106N, p=0.08). 

TABLE I.  FUNCTIONAL MEASURES 

 

 Activity (with respect to baseline) in the low beta 

frequency band (10-20Hz) for the left and right sensorimotor 

(M1) was found to be most consistently (across participants 

and hemispheres) scaling with force among all brain 

components analyzed. Fig. 2 shows the results of the IC 

decomposition and the sensorimotor sources location (M1) 

and scalp activation for each participant. Fig. 3 illustrates the 

increasing modulation of force, muscle (FDI), and EEG beta 

band desynchronization as the target force increases (10%, 

30%, 50% MVC) as shown for an exemplary participant S1.  

Across all participants, peak desynchronization 

corresponding to the maximum brain-force scaling occurs in 

the low beta band with frequencies ranging from 13 to 21Hz. 

As illustrated in Fig. 4, this EEG power peak 

desynchronization showed a consistent scaling with force. 

Furthermore, the ipsilesional source desynchronization is 

consistently and significantly lower than that of the 

contralesional side. They both show an increased 

desynchronization at larger force, which plateaus for the 

ipsilesional source at 30% MVC (red).   

Participant 
9HPT (s) BBT (boxes/min) 

Unaffected Affected Unaffected Affected 

S1 

S2 
S3 

S4 

26.6 

22.3 
25.3 

23.9 

No peg 

No peg 
48 

128 

42 

56 
46 

58 

3 

16 
32 

30 

Mean (std) 24.3±2.0 79±44 50±8 20±13 

p-value NA 0.02 

 

Figure 2. Dipole locations (middle) and corresponding normalized scalp 

topograhic electric field maps (left and right plot) for the left and right 
hemisphere sensorimotor source components for each participant. Dipole 

sphere and corresponding scalp map are color coded for each participant.    
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IV.  DISCUSSION 

As previously observed in the healthy and older population 

[17]–[20], we were able to find a neural marker that scales 

with force in stroke survivors. This relationship was not only 

found in the contralesional side for handgrip contraction of 

the unaffected hand, but also in the ipsilesional side during 

contraction of the affected hand. This was only consistently 

found for ICs in the sensorimotor area and low beta (10-

20Hz), highlighting the critical role of these brain sources and 

frequency band in driving motor output. The physiological 

role of beta desynchronization remains poorly understood. 

Evidence suggests that it reflects the release of background 

cortical inhibition involved in gating motor commands and 

somatosensory inputs during movement execution [28], [29]. 

Beta band cortico-muscular coherence, a measure of the brain 

to muscle drive has also been shown to scale with force 

supporting the role of M1 brain source within the beta band 

in driving motor output [30]. As indicated previously [22], 

[23], due to the stroke, we observed a marked decrease in 

brain activity in the ipsilesional M1 ICs. The ipsilesional 

reduction in beta desynchronization during movement and the 

resulting decrease in overall MVC force compared to the 

contralateral unaffected brain region are consistent with its 

role in driving motor output. It is noteworthy that the 

ipsilesional EEG-force relationship plateaus at higher force 

output, another reflection of the loss in motor drive. 

 The small sample size is a major limitation of the current 

study. Irrespective, results remain strong and consistent 

across all four participants. Findings should be confirmed in 

a larger and more representative sample. 

V.  CONCLUSION 

A biomarker that scales with force was found in the 

ipsilesional primary motor cortex. The linear relationship was 

altered suggesting a potential role in reducing cortical drive, 

and force output to the affected hand. The modulation of such 

a marker using brain stimulation or neurofeedback could 

potentially strengthen the brain to muscle drive, enhancing 

neuroplasticity and motor recovery.   
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Figure 3.  Force, EMG (FDI), and EEG power for an exemplary participant 
(S1) for the left and right affected hand contraction at 10%, 30% and 50% 

MVC shown respectively in blue, green, and red. The right ipsilesional (left 

contralesional) M1 EEG source activity controlling the left (right) hand is 
shown on the left (right).  These results illustrate the lower activity on the 

left affected compared to right unaffected hand contraction at each level of 

force amplitude. 
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