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Abstract— Pain, as a multivalent, dynamic and ambiguous
phenomenon is difficult to objectively quantify, in particular,
in real clinical settings due to several uncontrollable factors.
Respiratory rate is one of the bio-signals whose fluctuations
strongly correlates with pain, however, it has been often
neglected due to its monitoring difficulties. In this paper,
to the best of our knowledge for the first time, we propose
an objective pain assessment method using respiratory rate
derived from wristband-recorded Photoplethysmography
(PPG) signals collected from real post-operative patients (in
contrast to the existing studies analyzing stimulated pain).
We first derive respiratory rate from post-operative patients’
PPG signals using an Empirical Mode Decomposition (EMD)
based method and extract several statistical features from it.
We then implement a feature selection method to identify the
top most significant features, and exploit a weak supervision
method to address the unbalanced nature of the collected
labels in real settings. Several machine learning algorithms
are applied to perform binary classification of no pain (NP)
vs. three distinct pain levels (PL1 through PL3). We obtain
prediction accuracy of up to 81.41% (NP vs. PL1), 80.36%
(NP vs. PL2) and 79.48% (NP vs. PL3) which outperform the
results reported by the state-of-the-art, despite obtained from
data collected from real post-operative patients.

I. INTRODUCTION

Assessment of the presence and intensity of pain is the key
to adequate pain management [1]. Under- or over-treatment
of pain can lead to multiple critical health problems [2], [3].
However, pain as a multivalent phenomenon is difficult to
quantify [4]. Recently, automatic and continuous objective
pain intensity assessment methods using physiological signs
have gained interest [5]. Through monitoring Electrocardio-
graphy (ECG), Photoplethysmography (PPG), Electrodermal
Activity (EDA), and Electromyography (EMG) (often using
wearable devices), researchers have studied the association
between pain and the autonomic nervous system activity
[6], [7]. However, the existing solutions have only focused
on stimulated pain collected from healthy volunteers. This
motivated us to develop the UCI iHurt Database [8] as
the first multimodal dataset collected from post-operative
patients suffering from real pain in an acute pain unit.

Recently, a number of studies have also suggested that pain
influences respiration by increasing its frequency, flow, and
volume [9], [10], however, to date, there are limited efforts to
objectively assess pain intensity using respiratory signals. For
example, Thiam et al. [11] and Kessler et al. [12] assessed
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(stimulated) pain intensity using video-extracted raw respira-
tory signals collected from healthy volunteers. However, their
method shows a rather low estimation accuracy (%50-%60)
when classifying pain into three different intensity levels.

In this paper, to the best of our knowledge, for the first
time, we propose an objective pain intensity assessment
method for post-operative patients by only using RR. It
should be noted that a pain assessment study on real patients
is associated with several challenges (e.g., unbalance labels
distribution, missing data, motion artifacts, etc.) since several
parameters such as the intensity, distribution, frequency, and
time of the pain as well as the environment can not be
controlled by researchers. Our method first derives respi-
ratory signals from wrist-based PPG signals and performs
feature extraction from them. Then, we apply a feature
selection method to find the most contributing features to
reduce our algorithm’s complexity. A machine learning based
weak supervision method [13] is implemented to increase the
number of pain intensity labels and balance their distribution
to enhance the model training performance. We use five
different machine learning algorithms and evaluate their
performance compared with the state-of-the-art [11]. Our
method obtains a higher pain assessment accuracy using res-
piratory features extracted from PPG-recording wristbands
despite being tested in real clinical settings. The contribution
of this work is three fold:

• We propose a pain assessment method using a dataset
collected from post-operative patients (UCI iHurtDB)
while obtaining a higher accuracy compared with the
existing works.

• We assess patients’ pain levels using RR derived from
PPG signals from a wristband showing the promises
of our method to be used in everyday settings using
wearable sensors as well.

• We provide a novel method to enhance the sparsely of
the labeled dataset based on a weak supervision method.

The subsequent sections are organized as follows. Section
2 describes the study design and data collection. Section 3
presents our proposed method and a full pipeline of deriving
RR signal from PPG signal to the weak supervision algo-
rithm. Section 4 presents the experimental results. Section 5
describes the analysis and discussion. Section 6 concludes
the paper.

II. STUDY DESIGN & DATA COLLECTION

This study is a prospective observational data collection
from 25 post-operative patients likely having mild to mod-
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erate pain. The full detail of the study and data collection
protocol is explained in [8].

In this study, PPG signals were continuously recorded
for approximately 30 minutes using a commercial wristband
(Empatica E4). At the beginning of the study, we used a
Transcutaneous Electrical Nerve Stimulation (TENS) device
to induce pain and collect baseline signals from the subjects.
TENS unit can stimulate multiple levels of acute pain by
delivering small electrical impulses through electrodes at-
tached to the subject’s skin with adhesive pads. Participants
were asked to gradually increase the TENS unit’s intensity
to their tolerable level and hold for at least 10 seconds.
After that, we decreased the stimulus intensity back to level
0. Then, participants were instructed to perform some low-
intensity activities such as walking, coughing, sitting up, or
lifting legs that caused a degree of pain. This process was
repeated several times to enhance the data reliability. The
person’s self-reported pain levels were measured using the
Numeric Rating Scale (NRS), which is a segmented numeric
version of the Visual Analog Scale (VAS). NRS quantifies
the pain intensity to 10 levels, where 0 indicates no pain
while numbers from 1 to 10 represent different pain levels,
with 10 being the highest pain imaginable. Pain scores were
recorded by making a mark on a 10-cm line representing a
sequence between ”no pain” and ”worst pain”.

Fig. 1: Filtered PPG signal and the corresponding respiratory
signal in one minute

TABLE I: Extracted features and their descriptions

Feature Description
Peaks The number of inhale peaks
Mean The mean value of the signal
Max The maximum value of the signal
Min The minimum value of the signal
Range The difference between the maximum and the minimum value

of the signal
STD Standard deviation of the signal
AVPI The average value of the inhale peak intervals
SDPI The standard deviation of the inhale peak intervals
RMS The root mean square of successive differences between

adjacent inhale peak intervals
COE Standard deviation of inhale duration/average inhale duration

III. METHOD

A. Derived Respiratory Signals From PPG and Feature
Extraction

We used an Empirical Mode Decomposition (EMD) based
method proposed by Madhav et al. [14] to derive respiration
signals from PPG. This method was proved to derive RRs
from a PPG signal with high accuracy (99.87%). Figure 1
shows a filtered PPG signal and its corresponding respiratory
signal. As can be seen from this Figure, the RR signal
derived from a PPG signal only include inhale peaks, which
is different from a regular respiratory signal. Therefore,
extracting other types of respiratory features from this signal
is not feasible. The respiratory features extracted in this study
are briefly described in Table I.

B. Feature Selection

To ensure generalization and avoid overfitting of the
pain assessment model, we implemented a feature selection
method. Feature selection reduces the training time and
overfitting and improves the accuracy of the classification.
In this study, we used a filter-based feature selection method
as it is less computationally intensive and has a lower risk of
overfitting compared with other methods [13]. This method
statistically determines the relationship between input fea-
tures and target labels. Gini impurity gain is used in our
filter-based method to select the most informative features
for the classification model. A decision-tree based random
forest classifier is used to output the feature importance
vector. Inside the decision tree model, every node is a
condition on one of the features, and these nodes supposed
to separate the data into two different sets. The data with the
same labels will be separated into one group in an optimal
scenario. The splitting condition depends on the impurity
of the features chosen in every node. During the training
process, the contribution to the decrease in the impurity of
each feature is calculated. Then, the importance of features
is ranked according to this measurement.
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Fig. 2: The distribution of 11 classes NRS labels

C. Features Labeling Method

Figure 2 shows the distribution of 11 NRS pain labels
reported by participants during the clinical trials. As can
be seen from this figure, unbalanced label distribution is an
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inherent challenge for further classification since these NRS
labels were recorded from real post-operative patients during
clinical trials. For example, there are 97 pain labels ”four”,
but there are only 4 pain labels ”ten” among all patients.
Such unbalanced distribution of pain levels is unavoidable
because of the subjective and realistic nature of this study
and the presence of different intensities and/or pain sources
among the patients.

Respiratory signal related features are usually calculated
per one minute. However, considering that the time interval
of pain labels reported by patients might be less than one
minute, we chose 20 seconds as the feature extraction win-
dow to avoid data overlap during the labeling process. This
indicates that all the pain labels are matched to their nearest
20 seconds feature window. After that, we used the Snorkel
weak supervision method [13] to label other feature windows
for which the NRS pain labels does not exist. Snorkel is an
end-to-end method that leverages a weak supervision method
to label a training dataset when limited ground truth data
is available. This method is in particular beneficial for our
case to address the unbalanced nature of our labels collected
in a real setting. In this study, we considered all the NRS
pain labels collected directly from the patients as ”strong”
labels to train the labeling function. Each patient’s strongly
labeled data was only used to mark their unlabeled windows.
These remaining data points labeled by Snorkel are called
”weak” data. We only use these weakly labeled data in our
training process (not in the validation process) to ensure
a fair evaluation of the pain assessment accuracy. In other
words, our algorithm’s final performance is assessed using
only real data collected from post-operative patients. After
the labeling process, the number of each pain label gained
varying degrees of growth resulting in 58 pain levels ’0’ to
use as the baseline.

To compare the performance of our pain assessment al-
gorithm with the state-of-the-art [11], we downsampled the
pain labels from 11 classes (0-10) to 4 classes (0 to 3).
All the labels of pain level 0 were taken as the baseline
while the remaining 10 classes were grouped into 3 classes.
We considered pain level 1-3 as a new pain level 1 (PL1),
pain level 4-5 as a new pain level 2, and pain level 6-10 as
a new pain level 3 (PL3). These downsampling thresholds
were chosen carefully to minimize the unbalanced label
distribution problem. The new labels distribution is shown
in Figure 3.

D. ML-based Predictive Models for Pain Assessment

We used a machine learning based approach to build
predictive models for pain assessment. Five different clas-
sification methods were implemented, including ADABoost,
XGBoost, random forest, support vector machine (SVM),
and k-nearest neighbor (KNN) classifiers.

To evaluate the performance of our classification models
in terms of generalizability, the Leave-one-subject-out cross-
validation method was used. For each iteration of the cross-
validation, we considered all the data points with only strong
labels as the test set and trained our pain model using the data
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Fig. 3: The distribution of 4 classes labels after using the
Snorkel and downsampling

points including strong labels as well as weakly supervised
labels using Snorkel for the rest of the patients.

IV. RESULTS

8 out of 10 features, including MAX, MIN, Range, AVPI,
Mean, STD and Peaks were selected by our feature selection
model. The pain assessment results using 5 classifiers were
shown in Figure 4 together with the results from Thiam et
al. [11] for comparison. This figure’s values are the average
accuracy across all subjects resulted from performing three
different binary classifications based on pain levels. The final
scores are summarized in Table II.
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Fig. 4: Validation accuracy of all classifiers on top 8 features

TABLE II: Validation accuracy of our models in comparison
with [11]

Pain levels ADA
Boost XGB RF SVM KNN [11]

BL vs PL 1 64.98 68.79 68.04 81.41 63.82 50
BL vs PL 2 65.26 71.01 70.18 80.36 59.58 52
BL vs PL 3 63.95 63.33 70.45 79.48 63.52 66

As can be seen from Figure 4, all of our five classifiers
achieve a higher accuracy compared with results reported by
Thiam et al., for the first two pain levels (BL vs PL 1 and
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BL vs PL 2). It should be noted that our models use only
8 features whereas there are 65 features used in the model
proposed in [11]. As for pain level 3, only the random forest
and SVM classifiers outperform their accuracy. Using the
same random forest classifier on respiratory features used
by Thiam et al. (65 features), the accuracy of the three
classifications is improved by 18.04%, 18.18%, and 4.45%.

Among the models, the SVM classifier achieved the high-
est performance. The accuracy of the three pain levels are
81.41%, 80.36%, and 79.48% separately. Compared to [11],
the differences for three pain levels are 31.41%, 28.36%,
and 13.48%, respectively. Our SVM classifier is significantly
outperforms their model using only 8 respiratory features
compared to the 65 features used in their models.

V. DISCUSSION

To the best of our knowledge, our is the first study
to develop an automatic pain assessment tool only using
respiratory signal derived from wrist recorded PPG data in
post-operative patients. The existing pain assessment meth-
ods using video derived RR obtained rather low accuracy
from stimulated pain dataset. They cannot discriminate low
levels of pain (PL1 and PL2) even with the help of multiple
biological features and complicated feature fusion methods.
One would expect to observe lower accuracy when moving
from stimulated pain in lab-settings to real post-operative
pain in hospital settings. However, our models outperform the
state-of-the-art despite being trained on a dataset collected in
a harsher and more realistic setting (e.g., with environmental
noise, motion artifacts due to movements, unbalanced labels,
etc.). Our strategy using weak supervision, in particular,
addressed the main issue of hospital-settings which is the
unbalanced nature of labels.

According to our results, our algorithm’s accuracy in
all three pain levels is higher than the respiratory signal
based results presented in [11]. Besides, the accuracy is
considerably higher in our SVM classifier for all three pain
levels compared to Thiam et al.’s results using 65 automatic
extracted respiratory features using a complicated feature
fusion method. These comparisons show that our algorithm
can assess different intensities of pain with high accuracy
from real patients using only respiratory signal derived from
PPG data recorded by a wristband despite the existence a
variety of noises such as motion artifacts.

The choice and proper use of the machine learning meth-
ods significantly contributes to these improved results. The
feature selection method helps understand the importance of
multiple respiratory signal features and reduce the model’s
complexity. Our initial assumption was that the number of
respiration highly determines the pain assessment. However,
our results shows that the number of peaks is less influential
compared to other features (eighth among ten) after the
feature selection process. The potential reason for this might
be the 20 seconds time window used in this study. Due to our
realistic monitoring settings for post-operative patient, the
frequency and time of the pain reports are uncontrollable,
therefore, the time interval for some pain labels are less

than 1 minute. For this reason, we were unable to use
the standard 1 minute time window to avoid data overlap
between different pain labels. To the best of our knowledge,
we used the Snorkel weak supervision method for the first
time for pain assessment. In addition to help with balancing
the dataset, this method also reduces the workload of data
collection. We believe the holistic use of these methods
enhanced the reliability of our pain assessment results.

PPG signals can be monitored easily using smart wristband
or smart ring these days. Our novel method can assess
patients’ pain levels using RR derived from PPG signal from
these devices, which shows high promises of our method to
be used in everyday settings too.

VI. CONCLUSIONS

In this paper, we proposed a uni-modal pain assessment
method using respiratory signals derived from wrist-recorded
PPG in post-operative patients. Our method demonstrates
considerably higher accuracy improvements in patients as-
sessment compared to other related pain studies despite
being conducted in a real setting. Our model can assess
pain intensity with less complexity using only respiratory
signal derived from wristband recorded noisy PPG data. The
assessment accuracy for three pain levels were up to 81.41%
(NP vs. PL1), 80.36% (NP vs. PL2) and 79.48% (NP vs.
PL3), respectively, showing that the promises of our method
in pain assessment application for clinical use. Future studies
can focus on adding more modalities into the pain assessment
algorithm to further increase the performance.
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