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Abstract—Introduction: The possibility of low-dose positron 

emission tomography (PET) imaging using high sensitivity long 

axial field of view (FOV) PET/computed tomography (CT) 

scanners makes CT a critical radiation burden in clinical 

applications. Artificial intelligence has shown the potential to 

generate PET images from non-corrected PET images. Our aim in 

this work is to develop a CT-free correction for a long axial FOV 

PET scanner. Methods: Whole body PET images of 165 patients 

scanned with a digital regular FOV PET scanner (Biograph Vision 

600 (Siemens Healthineers) in Shanghai and Bern) was included 

for the development and testing of the deep learning methods. 

Furthermore, the developed algorithm was tested on data of 7 

patients scanned with a long axial FOV scanner (Biograph Vision 

Quadra, Siemens Healthineers). A 2D generative adversarial 

network (GAN) was developed featuring a residual dense block, 

which enables the model to fully exploit hierarchical features from 

all network layers. The normalized root mean squared error 

(NRMSE) and peak signal-to-noise ratio (PSNR), were calculated 

to evaluate the results generated by deep learning. Results: The 

preliminary results showed that, the developed deep learning 

method achieved an average NRMSE of 0.4±0.3% and PSNR of 

51.4±6.4 for the test on Biograph Vision, and an average NRMSE 

of 0.5±0.4% and PSNR of 47.9±9.4 for the validation on Biograph 

Vision Quadra, after applied transfer learning. Conclusion: The 

developed deep learning method shows the potential for CT-free 

AI-correction for a long axial FOV PET scanner. Work in 

progress includes clinical assessment of PET images by 

independent nuclear medicine physicians. Training and fine-

tuning with more datasets will be performed to further consolidate 

the development.  

Keywords—total-body PET, CT-free, scatter correction, 

attenuation correction, deep learning 

I. INTRODUCTION 

Positron emission tomography (PET) is one of the main 
imaging modalities in clinical routine procedures of oncology 
[1], neurology [2] and cardiology [3]. Quantitative PET is being 

widely acknowledged as an important tool for diagnosis, 
monitoring of malignant diseases, and determination of 
prognosis [4, 5]. With the advent of the long axial field of view 
(FOV) total-body PET [6], it enables previously unachievable 
levels of image quality and quantification, with reduced 
radiopharmaceutical dose [7]. Attenuation (AC) and scatter 
correction (SC) are essential for precise PET quantification, 
which require additional structural images to calculate 
attenuation factors and model scatter. On commercial PET/CT 
scanners such as Biograph Vision Quadra, computed 
tomography (CT) imaging is used to generate an attenuation 
map for 511 keV photons [8], which inevitably introduces 
additional ionizing radiation to patients [9].  

Recent years, artificial intelligence (AI) has developed great 
success in medical image analysis applications, especially with 
deep learning techniques [10], several studies have focused on 
estimating corrected PET images with non-corrected PET with 
deep neural networks [11, 12]. Inspired by these studies, our 
study sets out to explore the possibility to develop a CT-free AI-
correction for this ultra-long FOV PET scanner, with the help of 
deep learning techniques.  

II. MATERIALS AND METHODS 

A. Patient Cohorts 

Three cohorts with 172 subjects were included in this study 
(Table 1). The subjects were scanned on 2 different PET 
scanners (Biography Vision 600 (Siemens Healthineers) and 
Biograph Vision Quadra (Siemens Healthineers)). The first 
cohort, collected in Shanghai (SH), consists of 114 subjects 
referred to 18F-FDG PET, was employed for the development of 
our deep learning based method. The other two cohorts, scanned 
on Vision and Quadra with 18F-FDG PET at Bern, were recruited 
for external testing the developed algorithm. 
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Table 1. Information on patients’ demographics and diagnosis. 

Patient Cohorts 

Source of dataset 

Vision (SH) 

- FDG 

Vision 

(Bern) - 

FDG 

Quadra 

(Bern) - 

FDG 

Number of Patients 114 51 7 

Total dose (MBq) 364.8±82.7 253.9±46.8 246.9±65.1 

Post-injection time 

(min) 
80.7±20.9 74.7±12.4 230.6±40.4 

Gender (Male/Female) 67/47 20/31 5/2 

Age (Year) 57.1±14.7 
Not 

applicable 
67.6±9.7 

Weight (kg) 66.5±15.0 71.6±13.1 69.1±14.6 

 

B. Deep Neural Network Setup 

To generate corrected PET images without the use of 
additional structural information, a semi-supervised 2D 
conditional generative adversarial network (c-GAN) [13] was 
employed, which consists of a generator network to synthesize 
the corrected PET images from non-corrected images, and a 
discriminator to distinguish between the synthesized corrected 
images and the real inputs. We specifically customized our 
model by including residual dense block [14], which enabled it 
to fully exploit hierarchical features from all network layers. The 
model was trained with Vision data collected from Shanghai, 
and later tested on datasets of Vision (Bern) and Quadra. 
Furthermore, we applied transfer learning [15] to improve the 
performance of our developed model, when applied on the 
Quadra dataset, due to the lack of available data at the current 
stage. 

C. Evaluation method 

To evaluate the quality of the AI-corrected PET images, we 
calculated and compare the physical metrics including voxel-
wise normalized root mean squared error (NRMSE) and peak 
signal-to-noise ratio (PSNR). 

III. RESULTS 

As shown in Figure 1.A, the preliminary results of physical 
metrics demonstrated that, the developed deep learning method 
achieved similar accuracy on two Vision datasets 
(SH_Vision_AI and Bern_Vision_AI), with an average NRMSE 
of 0.4±0.3% and PSNR of 51.4±6.4 on external Bern Vision 
cohort after AI-correction. Figure 1.B provides the visual 
rendering a test example when applying our developed model to 
the Bern Vision cohort, which confirmed the effectiveness of 
our AI-correction. 

When applied directly to the Quadra dataset, the 
performance of the developed algorithm was not satisfactory in 
terms of the physical metrics. However, with the help of transfer 
learning based on a small part of the cohort, we were able to 
achieve similar accuracy as the Vision dataset, with an average 
NRMSE of 0.5±0.4% and PSNR of 47.9±9.4. 

IV. DISCUSSIONS 

With the currently available datasets collected from the 
Biograph Vision Quadra PET/CT system, we can only obtain 

preliminary results, and transfer learning was a suboptimal 
solution for better performance of a network trained on Vision 
600 datasets. As more subjects are added to the ongoing data 
collection, we will develop a specific long axial FOV PET 
scanner with optimal performance. At the same time, additional 
evaluation methods will be applied to help us better understand 
the true strengths and limitations of the developed algorithms. 
For example, we will perform organ-wise quantitative analysis 

and evaluated the feasibility towards clinical practice. Besides, 
more widely applied physical metrics would be recruited, like 
mean absolute percentage error (MAPE) and similarity 
structural index measurement (SSIM) [16]. 

 

Figure 1. A: Improvement with the help of the developed artificial 

intelligence (AI) correction in terms of NRMSE (normalized root 

mean squared error) and PSNR (peak signal-to-noise ratio) on all 

three datasets, including Siemens Biography Vision collected from 

Shanghai (SH) and Bern, as well as Siemens Biograph Vision 

Quadra. B-C): Example of test results of Vision (Bern) and 

Quadra. 
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V.  CONCLUSIONS 

The developed deep learning method shows the potential for 
CT-free AI-correction for a long axial FOV PET. Work in 
progress includes clinical assessment of PET images by 
independent nuclear medicine physicians. Training and fine-
tuning with more datasets will be performed to further 
consolidate the development. 
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