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Abstract— The elderly fall detection is one critical function
in health of the elderly. A real-time fall detection for the
elderly has been a significant healthcare issue. The traditional
video analysis on cloud has large communication overhead. In
this paper, a fast fall detection system based on the spatio-
temporal optical flow model is proposed, which is further
deeply compressed by a structured tensorization towards an
implementation on edge devices. Firstly, an object extractor
is built to extract motion objects from video clips. The spatio-
temporal optical flow model is formed to estimate optical flow
fields of motion objects. It can extract features from objects
and their corresponding optical flow fields. Then these two
features are fused to form new spatio-temporal features. Finally,
the tensor-compressed model processes the fused features to
determine fall detection, where the strongest optical field would
indicate the fall. We conduct experiments with Multicam and
URFD datasets.

Clinical relevance— It demonstrates that the proposed model
achieves the accuracy of 96.23% and 99.37%, respectively.
Besides, it attains the inference speed of 83.3 FPS and storage
reduction of 210.9×. Our work is further implemented on an AI
acceleration core based edge device, and the runtime is reduced
by 9.21×.This high performance system can be applied to the
field of clinical monitoring in the future.

I. INTRODUCTION

Fall detection for the elderly still remains a great challenge
[1]. In the literature, there are two types of fall detection
systems that are currently dominant, which are 1) traditional
transducer-based and 2) AI-driven vision-based approaches.
The traditional sensor-based approaches commonly employ
the accelerometers and gyroscopes to detect the accelera-
tions, velocities and angles of a motion [2], [3]. Recent
vision-based schemes driven by deep learning have suc-
cessfully achieved fall detection in surveillance cameras.
Histograms of Oriented Gradients (HOG) and Local Binary
Pattern (LBP) [4] are adopted to extract hand-crafted features
for fall detection. CNN-3B3Conv [5] is presented to learn
features from convolutional neural networks (CNNs). These
methods extract the features in the video by processing each
frame, but there are some limitations in capturing temporal
information along sequences. Recently, LSTM networks [6]
are developed to learn temporal video representations for
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fall detection. 3D CNNs [7], [8] are proposed to locate the
falling activities and improve accuracy of the detection by
taking the place for the 2-dimensional convolutions with
spatial 3-dimensional convolutions. However, all of the above
methods require dense calculations of raw data, resulting in
a huge amount of memory and storage needs, and hence
cannot be real time on edge devices. The reluctant solution of
video analysis on cloud however causes large communication
overhead.

To tackle these problems, we propose a spatio-temporal
optical flow model to achieve accurate and real time fall
detection on edge devices. The contributions are fourfold:

• We implement the proposed fall detection network on
an AI acceleration core based edge device with a real
time speed.

• We devise a spatio-temporal optical flow model to learn
the spatial features of each frame and the temporal
features of optical flow field in video stream, which are
further fused to the highly structured spatio-temporal
features.

• We develop a tensor-compressed LSTM to quickly de-
tect falling activities based on the fused spatio-temporal
features.

In the following parts, the whole design of proposed fall
detection network is presented in Section II. Section III
provides the hardware implementation on the edge devices.
Section IV reports experimental results on several different
datasets and Section V summarizes the whole paper gets the
conclusion.

II. PROPOSED FALL DETECTION FRAMEWORK

This section presents the proposed fall detection frame-
work, which is shown in Fig. 1. The object extractor aggre-
gates the target objects from each frame of the surveillance
videos. The spatio-temporal optical flow model learns and
fuses the spatio-temporal features of the target objects in
video stream. These two things together make up a Spatio-
temporal feature extractor. Based on the highly structured
spatio-temporal features, a tensor-compressed LSTM is fur-
ther applied to precisely detect the fall.

A. Spatio-temporal Feature Extractor

The proposed object extractor divides each input frame
into an S × S grid with B bounding boxes predicted with
the corresponding confidence scores and each representing
an object. According to the threshold value, the objects with
low possibilities out of all predicted S × S × B bounding
boxes will be removed.
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Fig. 1. The framework of fast fall detection using compressed LSTM optical flow model.

In order to make the proposed fall detection network
more robust when it inferences, the optical flow features
are adopted as the temporal representations to perform fall
detection rather than traditional raw RGB data.

a) Optical Flow Estimation: Optical flow field is the
displacement vector between continuous frames, which can
represent the motion of objects. For the k − th frame,
dk(m,n) represents the corresponding displacement vector
at the point (m,n). dxk and dyk denote the horizontal and
vertical components of the vector field, respectively. The
motion pattern of the objects in S continuous frames is
described by stacking dxk and dyk to 2S channels. Specifically,
the process can be indicated as follows:

C(m,n, 2a− 1) = dxa(m,n)

C(m,n, 2a) = dya(m,n)
(1)

where C ∈ Rw×h×2S is the output of our optical flow
estimation, w and h are the number of horizontal pixels and
vertical pixels of the frames.

b) Spatio-temporal Features: Similar with the optical
flow field, we stack the raw rgb frames to B ∈ Rw×h×3S .
The proposed spatio-temporal optical flow model can extract
both spatial features and temporal features from the inputs
B and C, respectively. The extraction process can be shown
as follows:

fsp = extractnn(B)

f tp = extractnn(C)
(2)

where the extractnn expression describes the spatial features
and temporal features extraction process, fsp and f tp denote
the extracted spatial and temporal features respectively. Fur-
thermore, for the sake of the higher accuracy of fall detection,
we fuse the fsp and f tp as follows:

ffused = fuse(fsp, f tp) (3)

where ffused represents the fused spatio-temporal features,
and the fuse operation denotes the feature fusion process.

B. Tensor-compressed LSTM Model

a) LSTM Model: Based on the fused features ffusedt , a
tensorized LSTM is constructed to learn the distilled spatio-
temporal feature for fall detection. For each cell in the

tensorized LSTM, it learns to update its state parameters in
real time based on the current input features and past states,
as shown below:

It = σ(Wif
fused
t + UiHt−1 +Bi)

Dt = σ(Wdf
fused
t + UdHt−1 +Bd)

Et = σ(Wef
fused
t + UeHt−1 +Be)

C̃t = tanh(Wcf
fused
t + UcHt−1 +Bc)

Ct = It � Ct−1 +Dt � C̃t

Ht = Et � tanh(Ct)

(4)

where σ indicates the sigmoid function, � represents the
element-wise product, and tanh denotes the hyperbolic tan-
gent function. Ht−1 and Ct−1 are the previous hidden state
and previous update factor, Ht and Ct are the current hidden
state and current update factor, respectively. The weight
matrices W∗ and U∗ perform the input ft and the previous
hidden state Ht−1 to update factor C̃t and three sigmoid
gates, It, Dt and Et.

The LSTM captures all each frame of video information
from the initial frame till the current frame. However, the
LSTM needs from huge number of parameters and high
dimensional inputs, which makes it hard to train and suscep-
tible to overfitting even when it fully converges. To address
the problem, we make use of tensor decomposition method
to deeply compress the LSTM.

b) Tensor Decomposition in LSTM: For a
d-dimentional tensor F ∈ Rl1×l2×...×ld , where
F(h1, h2, ..., hd) is an element specified by the indices
h1, h2, ..., hd, it can be approximated by a number of tensor
cores Gk ∈ Rrk−1×lk×rk (k ∈ [1, d]), expressed as follows:

F(h1, h2, ..., hd) = G1(h1)G2(h2)...Gd(hd) (5)

where Gk(hk) ∈ Rrk−1×rk is a matrix slice from the 3-
dimensional tensor Gk and rk is the rank of Gk. For each in-
teger lk, it can be further decomposed as lk = mk×nk. As a
result, each tensor core Gk can be transformed and reformed
into G∗k ∈ Rrk−1×rk×mk×nk . Therefore, the decomposition
of the d-dimentional tensor F ∈ Rm1×n1×m2×n2×...md×nd

can be rewritten as:
F((i1, j1), (i2, j2), ..., (id, jd))
= G∗1 (i1, j1)G∗2 (i2, j2)...G∗d(id, jd)

(6)
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Double-index trick [9] as such is the core function to
decompose the fully-connected computation in LSTM cells.

In general, the large-scale matrix-vector multiplication is
the most expensive computation in the LSTM cell, generi-
cally denoted as:

y =Wx+ b (7)

where x ∈ RN is the input vector, b ∈ RM is the bias
vector, y ∈ RM is the output vector, and W ∈ RM×N

is the weight matrix. To approximates Wx with much
fewer parameters, the weight matrix W is reshaped into a
tensor W ∈ R(m1×m2×...×md)×(n1×n2×...×nd), where M =∏d

k=1mk and N =
∏d

k=1 nk. Similarly, x and b can be
reshaped into d-dimentional tensors X ∈ Rn1×n2×...×nd

and B ∈ Rm1×m2×...×md . As a result, the output y can
also become a d-dimentional tensor Y ∈ Rm1×m2×...×md .
Therefore, the matrix-vector multiplication in LSTM cells
can be reformulated as:

Y(i1, i2, ..., id) =
∑n1

j1=1

∑n2

j2=1
...
∑nd

jd=1
[G∗1 (i1, j1)

G∗2 (i2, j2)...G∗d(id, jd)X (j1, j2, ..., jd)] + B(i1, i2, ..., id)
(8)

Due to the tensor decomposition strategy, the computational
complexity in the tensor-compressed LSTM turns out to
be O(dr2maxmn) instead of O(md

n), where rmax is the
maximum rank of cores Gk and mn is the maximum model
size mk · nk of weights W .

III. IMPLEMENTATION ON EDGE DEVICE

To verify the speedup and lightweight of our proposed
fall detection network, we implemented it on an edge device
with the high efficient and programmable AI chip. As shown
in Fig. 2, the chip contains a digital vision pre-processing
module, an Arm CPU, two AI cores, an on-chip buffer with
the capacity of 8MB, and some driver interfaces. It delivers
up to a peak performance of about 8 TFLOPs for 16-bit
floating-point and 16 TOPs for quantized 8-bit computations,
with merely 8W of power consumption. The AI core is
specifically deployed as a neural network accelerator.

Due to complicate network architecture, the feature extrac-
tion part and the LSTM prediction part are the most time-
consuming parts in our fall detection network. To improve
their runtime efficiency on the AI acceleration core based
edge device, we choose two different accelerating methods.
AI acceleration core plays an important role in speeding
up the feature extraction part. As for the LSTM prediction
part, tensor compression is utilized to accelerate it. The
experimental results are presented in detail in section V.

IV. EXPERIMENTS

The experimental setups are following: 1) NVIDIA GTX-
1080Ti, CPU E5-2660 and AI acceleration core are employed
for hardware realization and performance comparison. 2) The
tensor rank rk is set to 4. 3) The training epochs are set to
300 on the Multiple Cameras Fall Dataset (Multicam) while
200 on the UR Fall Dataset (URFD).

Fig. 2. Running compressed LSTM optical flow model on edge device
platform.

Fig. 3. Continuous frame samples and corresponding optical flow.

A. Performance Analysis

Multicam is a widely used fall detection dataset in the
literature. It contains 24 scenarios recorded with 8 video
cameras in 8 different locations. The accuracy comparison
between our method and some state-of-the-art approaches
on the Multicam is shown in Table I. It can be observed
in Table I that our method maintains the classification
accuracy as 96.23%, which outperforms all the state-of-the-
art approaches. It is 1.92% higher than the second best one.
And the accuracy has improved by 2.22% compared with
the Silhouette Area Variation [10] method which is based
on a layered hidden Markov model (LHMM). Specifically,
an increment of 13.07% against the deep-learning-based
approach Simple CNN [11].

URFD is also an often-used dataset for fall detection. It
contains 70 sequences. Table II shows the accuracy results of
the proposed method and the state-of-the-art approaches on
URFD. It can be seen that the proposed method significantly
outperforms others. Specifically, the accuracy of our method
reaches 99.37%, which is 3.17% higher than Hourglass
Convolution [12] and 4.37% than the MEWMA [13].

Fig. 3 shows visual samples of the outputs. As a result, we
can obtain abundant temporal information from the optical
flow field outputs. The sample visual results on the Multicam
are shown in Fig. 6. One can observe that all objects can be
detected and all “fall” or “no fall” activities can be precisely
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TABLE I
ACCURACY COMPARISON ON THE MULTICAM

Method Sensitivity Specificity Accuracy

Bounding box ratio [14] - - 56.60%

Simple CNN [11] 71.67% 77.48% 82.26%

Skeleton feature [15] 90.9% 93.75% 92.59%

Silhouette Area Variation [10] - - 94.01%

PA Ada [16] 93.85% 91.85% 94.31%

Ours 93.10% 98.87% 96.97%

TABLE II
ACCURACY COMPARISON ON THE URFD

Method Sensitivity Specificity Accuracy

Shi-Tomasi algorithm [22] 96.66% 95.00% 93.54%

MEWMA [13] 100.00% 92.00% 95.00%

Hourglass Convolution [12] 100.00% 93.00% 96.20%

Zerrouki and Houacine [23] - - 96.88%

Ours 100.00% 98.51% 99.37%

predicted.
Besides the outstanding accuracy of our fall detection

network, the storage size and inference speed are also
remarkable. Fig. 4 and Fig. 5 show the storage size and
speed comparisons. The storage size of model is reduced
by 210.9× after tensor compression. Furthermore, it also
shows superiority against other advanced approaches shown
in the Fig. 4, such as TSM [17], ST-ResNet [18] and 3D-
CNN based approaches [8]. From Fig. 5, we observe that
the proposed network can run at 83.3 fps, which is faster
than all other approaches, including iDT+FV [19], Brox’s
Flow [20], BoCSS+VPSO-ELM [21] and 3D-CNN based
approaches [7]. Since the storage size is significantly reduced
and the inference speed is highly accelerated, the proposed
fall detection network is suitable for implementation on edge
devices.

B. Evaluation on Edge Device

We further report the performance of the proposed fall
detection network on an AI acceleration core based edge
device. A 720 × 480 video is used to test the run time
of inference. As shown in Table III, benefiting from the
AI acceleration core and tensor compression method, the
proposed framework achieves 9.21× speedup compared with
a high-end CPU.

Fig. 4. Storage size comparison.

Fig. 5. Inference speed comparison.

TABLE III
RUN TIME COMPARISON OF OUR MODEL ON AI CORE BASED EDGE

DEVICE

Method Run time

CPU Feature extraction + LSTM 30.53s

Arm CPU + AI core Feature extraction + T-LSTM 2.99s

V. CONCLUSIONS

This paper has proposed a real time edge device based
fall detection network using sptio-temporal optical flow
model which extracts the objects in the raw rgb frames.
Then a tensor-compressed LSTM is built based on the
spatio-temporal features to detect “fall” activities. The two
techniques can significantly improve the accuracy, inference
speed and compression ratio of our fall detection network.
Using the benchmarks of Multicam and URFD, the proposed
fall detection network achieves the accuracy of 96.23% and
99.37%, respectively. Moreover, the inference speed reaches
83.3 fps with 210.9× reduction in storage size. According to
superior performance, it is realized on an AI core based edge
device. The whole system achieves 9.21× speedup compared
with a high-end CPU, thereby rendering it a strong candidate
for fall detection on edge devices.
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Fig. 6. Video sample of fall detection results on edge device.
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