Spatial Smoothing Kernel Size Influences ICA Model Order and Spatial Maps of Intrinsic Connectivity Networks

Behnaz Jarrahi, Member, IEEE

Abstract— Earlier studies indicated that fMRI preprocessing methods influence properties of intrinsic connectivity networks (ICNs). In this pilot study, we examined the effects of spatial smoothing on the network dimensionality and spatial maps. Resting state BOLD fMRI data were acquired from healthy participants with a 3.0T MRI scanner. During preprocessing, various levels of spatial smoothing were applied to the data using an isotropic Gaussian kernel with full width at half maximum (FWHM) sizes 0 to 12 mm with a step of 2 mm. Independent component analysis (ICA) was applied to derive ICNs. Results revealed that the level of spatial smoothing clearly affects the network dimensionality, intensities of spatial maps, and peak voxel location. Using minimum description length (MDL) criteria, dimensionality generally decreased as smoothing kernel size increased. In contrast, entropy-rate based order selection indicated a general increase in model order as smoothing kernel size increased. Intensities of spatial maps, which are associated with the cohesiveness and connectivity inside the network, decreased in most ICNs, including the default-mode and salience networks, as the smoothing kernel size decreased. These findings provide a preliminary insight into the effects of spatial smoothing on model order and spatial maps.

I. INTRODUCTION

Previous fMRI research that studied effects of spatial smoothing recommend different kernel sizes ranging from 0 to 12 mm depending on analysis approach (seed-based functional connectivity vs. graph theory vs. ICA). However, the influence of spatial smoothing on the ICA model order (data dimensionality), and properties of spatial maps have not been investigated in detail.

II. MATERIALS AND METHODS

Resting state BOLD fMRI was collected from 22 healthy subjects (12 females, average age 37.73 years) on a 3.0T GE scanner. Preprocessing in SPM12 included motion and time correction, spatial normalization into the MNI reference space and spatial smoothing with an isotropic Gaussian smoothing kernel. To observe the effect of spatial smoothing, Gaussian filter kernel with full width at half maximum (FWHM) sizes 0 to 12 mm with a step of 2 mm were used. Minimum description length (MDL) criterion with independent and identically distributed (i.i.d.) samples, MDL criterion based on FWHM, entropy-rate based order selection by finite memory length model (ER-FM) and entropy-rate based order selection by autoregressive model (ER-AR) were used for estimating the number of independent source components in each dataset. Group ICA was performed with infomax algorithm in GIFT toolbox. To define significant brain regions associated with each ICN, spatial maps was normalized into z scores, and the averaged maps of z scores were entered into second-level random effects analysis in SPM12. Differences in spatial maps due to smoothing kernel size, were computed pairwise using paired *t*-test at false discovery rate (FDR) of 0.01.

III. RESULTS AND CONCLUSION

Results of model order estimation are summarized in Table 1. Using MDL criteria, ICA dimensionality generally decreased whereas the ER methods showed increased dimensionality with an increase in the smoothing kernel size. Spatial map Intensities, which can be considered as an ICA measure of within-network connectivity, decreased as smoothing kernel size decreased (Fig. 1; FDR-corrected p < 0.01). These results provide a preliminary overview of spatial smoothing effects on ICA model order and spatial maps.

Table 1. Estimated Independent Components (IC) Mean Median Std Min Max

1				Method 1: MDL (i.	i.d. Sampling)							
	8	ê	0			96	96.091	96	22.5724	65	147	1
	thir	Ē	2			111	111.32	112	20.8769	72	156	
	õ	Σ	4			94	94.273	89.5	26.4308	55	166	
	Sn	¥	6			96	96.455	98	14.094	65	123	
	siar		8			71	71	73	10.0428	54	90	
	aus	ern	10			81	80.5	81.5	11.2027	60	104	
	G	¥	12			65	64.682	62.5	14.5386	44	104	
				Method 2: MDL (F	WHM)							
	ng	Ê	0			67	66.591	63.5	14.0836	44	96	
	thi	Ē	2			73	73.091	72.5	11.7874	51	99	
	ğ	₹	4			82	81.727	83	11.1363	58	103	
	n Si	N.	6			94	94	97	12.0673	68	115	
	ssia	le	8			41	41.364	43	5.4208	31	49	
	jau	(err	10			123	123	127	15.2815	92	154	
	0	-	12	Marth a d 2. Eastern	and Developed	139	138.73	142.5	16.5994	106	178	
				by Finite Memory Length Model (ER-FM)								
	00	-	0			190	190	180	39.5474	130	267	
	iĻ	L L	2			186	185.73	179.5	33.5548	129	248	
	00	ž	4			185	185.45	182.5	31.0479	128	241	
	Sn	MH	6			193	193.14	190	29.417	140	240	
	sian		8			207	206.68	207	27.2718	150	248	
	SNE	EL	10			228	227.82	227	26.1345	170	269	
	G	¥	12			248	247.82	248	21.3221	199	280	
Method 4: Entropy-rate Based Order Selection by Autorearessive Model (ER-AR)												
		-	0			187	187.18	181.5	37.997	125	264	
	hing	m	2			184	184.36	179.5	34.9142	126	248	
	oot	L L	4			184	184	183	30.6656	128	233	
	Sm	Η	6			189	189.23	186	28,2403	134	237	
	ian	E	8			205	204.77	205.5	27.1818	149	248	
	IUSS	rne	10			225	225 18	224	26 1909	173	268	
	Ö	Å	12			246	246 18	247.5	22 1567	199	280	
				۸		B				<u> </u>		į.
							100.	1		Ň		-00
	6	D.					6	6	27	テ	A .	6
	200	100	8		and the second	And a	46	1		Hard Sizes	S.	र क
	:	i i	EI	ect Sizes	-	Effect Sizes	1			HELA SUZES		HI '
VN	100				VN			VN				
02222	12.0											
SMN	44 32 52		C -		SMN			SMN				
UDILI	100				AUDILN			AUD/LN				
DMN	24.7							DMN s				
	10.0			0.00			08					0
			-				action .		-			
GAN	111							Card				
	1											
BG	12.92				BG			BG				
BSN	8-1				BSN			BSN			N.	
CBN	-		Aun	arage Beta	4 14 1	Average Beta	· · ·	CBN	6 4 4 4 A	erage Betz	2 1 1	1

Figure 1. Significant effects of spatial smoothing kernel size on the intensities of spatial maps. Paired *t*-test results are shown for A S4 – S8, **B** S8 – S12, and **C** S4 – S12, where S denotes the Gaussian smoothing kernel with a FWHM of 4-, 8-, or 12-mm. FDR corrected-p < 0.01.

B. Jarrahi is with the Systems Neuroscience and Pain Lab, Stanford, CA, USA; (emails: behnaz.jarrahi@stanford.edu).