Design and Testing of a Closed-Loop Neurochemical Modulator

Placid Unegbu, Xilin Liu, Flavia Vitale

Abstract— Here we show the initial design of a USB-powered, low-cost device for closed-loop neurochemical modulation (CLNM). The device monitors neurochemical levels and can activate delivery of external stimuli. With the goal of designing a long-term in vivo neuromodulation device, CLNM can acquire fast scan cyclic voltammetry, as well as conduct electrochemical impedance spectroscopy to monitor electrode state.

Clinical Relevance— The specificity and efficacy of neuromodulation systems can improve by closed-loop devices using neurotransmitters to inform therapeutic intervention.

I. INTRODUCTION

Neurotransmission controls brain function and disease, but traditional neuromodulation platforms can only interact with the brain electrically. Novel closed-loop (CL) systems seek to monitor neurotransmitter (NT) concentration and use it as a biomarker to inform intervention [1]. Fast-scan cyclic voltammetry (FSCV) with carbon fiber microelectrodes (CFMEs) can monitor NTs in vivo and in real time, but increases in CFME impedance due to biofouling can degrade FSCV accuracy [2]. Even so, many state-of-art CL neurochemical platforms do not have electrochemical impedance spectroscopy (EIS) capability to determine the electrode stability. Hence, CLNM, a closed-loop device for real-time NT monitoring via FSCV equipped with EIS measurement capabilities.

II. METHODS

The basic architecture of CLNM consists of a microcontroller unit, ADuCM355, and an operational amplifier, OPA4192 (Fig. 1A). The AduCM355 has a high-speed DAC (HSDAC) to set the working electrode (WE) potential for FSCV and EIS, and a low-power DAC (LPDAC) to provide stimulation in a CL system. CLNM has a maximum scan rate of 500 V/s and a frequency sweep of 1–10⁵ Hz. The OPA4192 amplified the HSDAC output with a gain of 2 and achieved a scanning window of –0.5 ~ +1.9 V, suitable for providing excitation waveforms for dopamine (DA), serotonin, and other NTs. The AduCM355 features a programmable transimpedance amplifier (TIA) for nA current sensitivity. The current measurement is digitized onboard by a high-speed ADC and transmitted via USB. CLNM is controlled through a Phyton GUI (Fig. 1B) [3]. In the GUI the user can set FSCV/EIS parameters, visualize data in real-time data visualization, and export it to a CSV file.

EIS was performed with CFME (n=3) as WEs and an Ag/AgCl reference in 1X PBS, with a 10 mV sinusoidal input and 10³–10⁴ Hz frequency sweep. Similarly, EIS was conducted on the Gamry Reference 600 (Fig. 2A). FSCV was subsequently acquired with a CFME at 400 V/s, from –0.4 ~ +1.3 V vs. Ag/AgCl, in 0.7 mM DA solutions (Fig. 2B).

RESULTS

The results show good agreement between FSCV and EIS data collected with CLNM and Gamry. We plan to conduct additional tests in vitro and in vivo, develop a thresholding logic based on DA concentration, and implement our full CLNM platform using NTs as biomarkers.

REFERENCES