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Abstract:
This paper presents an extension of a self-learning control concept for automatic track guidance
of industrial trucks in intralogistic systems. The presented approach is based on Reinforcement
Learning (RL), a method of Artificial Intelligence (AI) and is able to adapt itself to different
industrial truck variants and the associated specific vehicle parameters. Moreover, time-variant
parameters during operation, such as the vehicle’s velocity are taken into account. In order
to consider the existing a priori knowledge of the controlled system and to avoid starting
the whole training process of the controller for each truck variant from scratch, the training
process is divided into two steps. In the first step, the controller is trained on a model using
parameters of a nominal vehicle variant. Based on this, the control parameters are only fine-
tuned in the second step. In this way the controller is adapted to the actual truck variant
and the corresponding parameter values. In order to take into account the time-variant vehicle
parameters during operation, the Artificial Neural Networks (ANN) of the RL controller and
the observation vector are suitably extended. In this way, the varying speed can be considered
in both training steps and the control parameters can be optimized accordingly. Thus, in case of
the investigated scenarios a stable control loop behavior can be guaranteed for the entire speed
range of industrial trucks. In order to demonstrate this, the new approach is compared with a
RL control concept, not considering time-variant parameters.
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1. INTRODUCTION

1.1 Problem description and requirements

In times of global economic markets and increasing com-
petition, the automation of logistic processes is a basic
requirement for corporate success. An important object
of research and development is to increase the internal
material flow via an autonomous and intelligent networked
fleet, that usually consists of a wide variety of different
individual truck variants.
In order to achieve this objective, the track guidance of
the industrial trucks has to be implemented autonomously.
The classical control design is based on a mathematical
model that describes the dynamics of the controlled system
as accurately as possible. In case of a heterogeneous fleet,
a suitable model has to be derived for each vehicle variant.
Based on this model, the control design has to be carried
out for every single truck variant, which proves to be time-
consuming.
Furthermore, time-variant parameters, such as the vehi-
cle speed, cannot be considered using classical control
concepts. However, actually the vehicle speed can vary
extremely. For example, the industrial truck creeps with

low speed during pick and place operations, but can reach
maximum values of up to 5.5 m/s during transfer opera-
tions (see Linde Material Handling [2022]).
Consequently, a control concept for automatic track guid-
ance of industrial trucks has to be developed that in-
dependently adapts to different industrial truck variants
and moreover considers time-variant parameters during
operation.

1.2 Related research

The papers Li et al. [2020], Tamba et al. [2008] and Mo-
hammadi et al. [2016] deal with the automatic track guid-
ance of industrial trucks, but each of them is focusing only
on a single truck variant. The classical methods of robust
control (Ackermann [1993] and Zindler [1994]) take into
account unknown but during operation constant model
parameters. The consideration of time-variant model pa-
rameters is not possible with these approaches.
In addition to the classical methods of adaptive control
(Landau et al. [2013] and Aström et al. [1995]), the con-
cepts based on AI are becoming increasingly important.
An overview as well as a classification of the different AI
approaches is given in Sauer et al. [2021].
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The well-known RL-control methods suffer from the fact,
that a priori knowledge concerning the dynamic plant
behavior is not integrated in the training process (Haven-
strom et al. [2020], Sallab et al. [2016]). Therefore, a
new approach has been presented in Sauer et al. [2021].
It’s basic idea consists of integrating a priori knowledge
of the controlled system into the training process. For
this purpose, the training is divided into two steps. In
the first step the controller is pre-trained on basis of a
nominal model representing a priori knowledge of lateral
dynamic vehicle behavior. Since this model is derived for
an industrial truck with average vehicle parameter values,
in the second step a fine tuning of the control parameters is
performed in order to adapt to the actual vehicle variant.
In this way the efficiency of the whole training process is
significantly increased.
However, this approach does not consider time-variant
vehicle parameters. Therefore, the simulation results are
restricted to a constant vehicle velocity value. Since this
parameter actually has a high influence on the dynamic
behavior of the vehicle (section 3), this dependency should
be taken into account in the design of the controller.

1.3 Main contribution and outline of this paper

This paper presents an extension of a self-learning control
concept for automatic track guidance of industrial trucks
which is based on RL. It adapts itself to different vehicle
variants and also takes into account time-variant model
parameters during operation. RL is implemented in form
of the so-called Twin Delayed Deep Deterministic Policy
Gradient (TD3) algorithm, as it proves to be suitable
for the application of automatic track guidance (Fujimoto
et al. [2018]). The method of integrating a priori plant
knowledge into the training process presented in Sauer et
al. [2021] is extended to the consideration of time-variant
vehicle parameters, in this application the highly variable
vehicle velocity.
By means of an appropriate extension of the so-called ob-
servation vector (section 4) the information of the current
vehicle velocity is integrated into the RL control concept.
Furthermore, the structures of the RL controller’s ANN,
have to be adjusted in order to process the information of
the observation vector. To take into account the variable
speed in the training process of the RL controller, the
training is divided into several epochs. During an epoch,
the vehicle speed is remaining at a constant value but is
changing between the individual epochs. By varying the
speed within the training, the parameters of the controller
can be adjusted for the entire speed range of the different
truck variants and a stable control loop behavior can
be guaranteed. To demonstrate this, the control concept
proposed in this paper is compared with the RL control
concept given in Sauer et al. [2021].
This paper is organized as follows. Section 2 introduces the
principle of automatic steering control and the correspond-
ing control structure. In section 3 the modeling of the plant
and analysis of the system will be described for different
vehicle velocities. The fundamentals of RL, the used TD3
algorithm and the control approaches will be introduced
in section 4. Subsequently, the simulation results of both
control concepts are assessed (section 5). At the end of the
paper, in section 6, the main conclusions are discussed.

2. SYSTEM OVERVIEW

Figure 1 demonstrates the principle of automatic steering
control of an industrial truck. First of all, the desired ve-
hicle trajectory (predefined path) is calculated and stored
as a data set. The record includes the necessary setpoint
information for automated vehicle guidance, such as the
Cartesian Coordinates and curvature of the trajectory.
The objective of automatic track guidance consists of
eliminating the lateral deviation of the vehicle with respect
to the path. In Sauer et al. [2021] it is shown that com-
pensating the lateral deviation ap in a preview point Pp,
is resulting in an improved controllability of the system.
For this purpose, Pp is defined in the preview distance lp
in front of the industrial truck’s center of gravity (CoG)
(Tan et al. [1999]). Based on the measured position of the
vehicle’s CoG, the Cartesian Coordinates of the preview
point Pp can be calculated. In order to determine the
deviation ap, it is necessary to calculate a reference point
Rp on the predefined path by means of the algorithm given
in Zindler et al. [2012]. The lateral deviation ap finally
corresponds to the distance between the preview point Pp
and the reference point Rp.
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Fig. 1. Principle of the lateral vehicle guidance system

The structure of the proposed vehicle guidance system
is provided in figure 2. The plant model (section 3)
consists of three parts starting with the position controlled
steering actuator. The second part is the so-called single
track model, that describes the lateral vehicle dynamics
(side slip angle β and yaw rate ψ̇) depending on the
steering angle δr. The last part represents the kinematics
of the vehicle, i.e. its relative motion with respect to the
predefined path. The curvature χp of the path in the
reference point Rp represents one input of the controlled
system and is considered as disturbance variable. The
second input is a control signal δset which is calculated by
the lateral controller in dependence of the lateral deviation
ap (output signal of the controlled system). The lateral
controller, shown in figure 2, is implemented using a new
method of RL, which is described in detail in section 4.
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Fig. 2. Structure of the vehicle guidance system
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3. PLANT MODEL

3.1 Modeling of the plant

As shown in section 2, the mathematical model consists of
three parts. The first part describes the dynamics of the
steering actuator and is implemented as a first order delay
element with the delay time Ts. Subsequently, the single-
track model (Pacejka [2006] and Zindler et al. [2012])
is used and adapted to describe the lateral dynamic of
forklifts with rear axle steering (figure 3). It is based on
the following simplifications and assumptions:

• Reduction to one wheel per axle
• Neglect of longitudinal dynamic forces like traction

forces, braking forces and aerodynamic drag forces
• Small steering angles, slip angles and side slip angles

In contrast to the assumption known from literature, in
this paper, the velocity of the vehicle is not assumed as
constant or slowly changing. Rather, it is considered as
time-variant model parameter v(t).
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Fig. 3. Single track model with rear axle steering

The third part of the model represents the kinemat-
ics of the vehicle. It describes the relative motion of
the industrial truck with respect to the predefined path
(Söhnitz [2001]). As shown in Sauer et al. [2021], the
preview concept is used in order to eliminate the non-
minimum phase system behavior, caused by the rear axle
steering of industrial trucks. The model can be given
in state space representation (equation 1), where x(t) =[
β(t), ψ̇(t),∆κ(t), ap(t), δr(t)

]T
describes the state vector

of the system and u(t) = [δset(t), χp(t)]
T represents the

vector of its input signals. These are the steering angle set-
point, calculated by the lateral controller (control signal),
as well as the curvature of the predefined path, considered
as disturbance variable. The plant model is derived in
detail in Sauer et al. [2021], where a validation using real
measurement data is described as well.
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3.2 Analysis of the plant model

In real applications, the speed varies frequently and is
depending on the current operation mode. For example,
in pick and place operations, the industrial truck has to
be guided precisely and accordingly very slowly, while
in transfer operations higher velocities are achieved. The
vehicle speed has a high influence on the dynamics of the
system. Figure 4 demonstrates the pole-zero diagram of
the industrial truck variant Linde E30. Its model parame-
ters are given in table 1. The diagram shows the location
of the poles (x) and zeros (o) for the entire speed range
from v = 1m/s to v = 5m/s.

Fig. 4. Pole-Zero-Map for different vehicle speed values

Obviously, the position of the poles strongly varies in
dependence of the speed values. For vehicle velocities
v ≥ 4m/s, there is a conjugated complex pole pair.
For increasing velocities this pole pair shifts towards
the imaginary axis, indicating a decreasing damping of
the system. The high variability of the dynamic system
behavior points out that the velocity has to be considered
as a time-variant parameter in the control concept.

4. CONTROL METHODS

4.1 Reinforcement Learning basics

RL in the domain of control systems is a well-known ap-
proach (Vogt [2018], Lillicrap et al. [2016] and Sutton et al.
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[2018]). Due to the analogy to the human learning process,
the self learning characteristics of RL offers potential for
solving complex control problems.

Table 1. Vehicle parameters
(Linde Material Handling [2022])

Description Linde E30 Linde E80

m vehicle mass 4981 kg 15720 kg
l wheelbase 1.665 m 2.400 m
cf cornering stiffness 62000 N/rad 62000 N/rad
cr cornering stiffness 122000 N/rad 122000 N/rad
lf axial distance to CoG 0.858 m 1.181 m
lr axial distance to CoG 0.807 m 1.219 m
Jz moment of inertia 3624 kgm2 26490 kgm2

Ts delay time constant 0.2 sec 0.2 sec

The principle of closed-loop operation process of RL is
displayed in figure 5. It essentially consists of three blocks.
The lowest block (vehicle) represents the controlled sys-
tem, in this case the industrial truck. Its current state
Φk is provided to the RL controller. This block describes
the lateral controller that calculates the control signal uk
in order to affect the controlled system. The third block
(reward function) evaluates the control signal uk based
on the current state Φk and the following state Φk+1, in
form of a feedback, called reward rk. It is a measure of
control quality. In analogy to the human learning process,
the control strategy is adapted in order to optimize the
reward.

actor-ANN (control strategy)

critic-ANN (value function)

vehicle

reward r

state control
signal u

reward
function 

state 

Reinforcement Learning Controller

Fig. 5. Principle of Reinforcement Learning

The implementation of the described basic idea of RL
can be done by different methods. In this paper the TD3
algorithm is used, which is an extension of the Deep
Deterministic Policy Gradient algorithm, given in Lillicrap
et al. [2016]. It is a so-called Actor-Critic method that uses
separate memory structures to differ between the control
strategy µ(Φ) (actor) and the value function Q(Φ, u)
(critic). Q(Φ, u) is a function to calculate the expected
reward r̂, based on its input signals Φ and u. Both, the
critic and the actor, are implemented in form of an ANN.
The optimization of the parameters φ of the critic-ANN is
done by supervised learning, based on the obtained reward
(Gurney [1997], Hagan et al. [2014]). The task of the
actor-ANN consists of calculating the control signal uk in
dependence of the current system state Φk and is indicated
as a function of the actor parameters θ. The optimization

of the parameters θ of the actor-ANN should be done in
order to maximize the output of the critic-ANN and thus
the reward. To implement this, a criterion J which is equal
to Q(Φ, u) is maximized using a gradient method given
in Lillicrap et al. [2016]. The resulting update function
(equation 2) is calculated by applying the chain rule to
the expected reward Q(Φ, u) with respect to the actor-
ANN parameters θ:

∇θJ ≈
1

N

N∑
i

∇uQ(Φ, u|φ)|Φ=Φi,u=µ(Φi)∇θµ(Φ|θ)|Φ=Φi

(2)

The observation vector Φ, reflecting the state of the
system, is depending on the chosen methodology. Whether
the time-variant parameter of the vehicle speed is taken
into account or not, the observation vector is composed
differently (subsection 4.2 and subsection 4.3).

4.2 Approach without consideration of the vehicle velocity

In this subsection, the RL control concept without con-
sideration of time-variant parameters is introduced. This
approach has been published in Sauer et al. [2021] and is
restricted to the assumption of a constant vehicle speed.
Therefore, the used observation vector Φ (equation 3)
is formed identical to the state vector x of the model,
described in section 3:

Φ = x = [β, ψ̇,∆κ, ap, δr]
T (3)

The behavior of the RL controller can be specified by
the definition of the reward function. Sauer et al. [2021]
demonstrated that closed-loop behavior of optimal state
control can be approximated by choosing the reward
function rk in analogy to the quadratic cost function of
classical LQR (Ichikawa et al. [1992]). In this application
the reward function is defined to focus on minimizing the
lateral deviation ap of the vehicle with respect to the
path. Therefore, the weighting factor of a2

p,k is chosen
significantly lager than the weightings of the other signals.

rk = −(β2
k + ψ̇2

k + ∆κ2
k + 10000 ·a2

p,k + δ2
r,k + 5 · δ2

set,k) (4)

4.3 Approach with consideration of the vehicle velocity

In order to take into account the high influence of the vehi-
cle speed on the dynamics of the controlled system (section
3) the observation vector Φ (equation 3) is extended by the
vehicle velocity signal, leading to Φext (equation 5).

Φext =

[
Φ
v

]
= [β, ψ̇,∆κ, ap, δr, v]T (5)

Since the signals of the observation vector form the inputs
of the actor-ANN and the critic-ANN of the RL controller,
the structure of these networks has to be adjusted by
extending the input layers of the ANN. A further neuron
is integrated in the ANN of the RL controller, in order
to process the information of the enlarged observation
vector. Figure 6 depicts a simplified representation of
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the structure of the actor-ANN (left) and the critic-ANN
(right). In the first hidden layer of both fully connected
feed-forward ANN, 400 neurons are inserted. Therefore,
the extension of the input layer with an additional neuron
results in a large number of ANN parameters.
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δr 

v

ACTOR - ANN
Input Layer Hidden Layer Output Layer
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Input Layer Hidden Layer Output Layer

CRITIC - ANN
Input Layer Hidden Layer Output Layer

δset 

β 

Δκ 

ap 

δr 

v

ψ 
• 
ψ 
• 

Fig. 6. Simplified representation of the extended ANN
structure of the RL controller

In order to compare the different RL control concepts with
each other, the reward function given in equation 4 is used
for this approach as well.

5. CONTROL DESIGN AND SIMULATION RESULTS

In this section, the simulation results of both RL concepts
are presented and evaluated. Subsection 5.1 focuses on the
results after the first training step (pre-training). This first
training step is performed using the model parameters of
a nominal industrial truck variant (Linde E30).
Subsequently, the adaptability of the RL concepts to an-
other vehicle variant, such as the Linde E80 will be dis-
cussed. For this purpose, the second training step (fine
tuning) is performed based on the pre-trained controller
(subsection 5.2). Both training steps are carried out in sim-
ulation using the model described in section 3, considering
the following scenario. The vehicle starts with an initial
lateral deviation of the preview point of ap = 0.2m, i.e.
offset from the path. The curvature of the path is applied
as a disturbance variable illustrated in figure 7. The path
initially runs as a straight line [0sec - 5sec] and then merges
into a curve with a constant radius ρpath [6sec - 10sec]. The
transition between the mentioned segments is realized as
a clothoid, where the curvature is linearly increased until
it reaches the final value [5sec - 6sec].
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Fig. 7. Path curvature in the reference point Rp (used in

subsection 5.1 and subsection 5.2)

The maximum path curvature value is defined to χp =
0.1m−1 which corresponds to a curve radius of 10 meters.
This scenario is defined in order to test both control
concepts within the entire speed range of industrial trucks.

Thus, it can be ensured that both industrial truck variants
can automatically be guided through the scenario even at
a high vehicle velocity of v = 4m/s.
However, in order to evaluate the closed loop behavior even
in scenarios with higher path curvatures, an additional
evaluation using a modified scenario is given in subsection
5.3. The initial lateral deviation of the preview point Pp
with respect to the path is set to ap = 0.3m and the
curvature is linearly increased [5sec - 6sec] to a final value
of χp = 0.2m−1 [6sec - 10sec] (figure 8).

0 1 2 3 4 5 6 7 8 9 10
time in seconds

0
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Fig. 8. Path curvature in the reference point Rp (used in
subsection 5.3)

5.1 Simulation results after the first training step

This subsection compares the two RL control approaches
after completion of the first training step. The simulation
results of the nominal vehicle variant (Linde E30) are
presented. It is to be shown, how the different control
concepts can deal with a time-variant vehicle speed during
operation. Since the concept given in Sauer et al. [2021] is
restricted to the assumption of a constant vehicle veloc-
ity, the RL controller is trained on a medium speed of
v = 2m/s, which remains constant in all training epochs.
For the concept considering time-variant model parame-
ters during operation, the structure of the ANN of the
RL controller is adjusted, as discussed in subsection 4.3.
The training process of the RL controller is divided into
several epochs, each of them with a different vehicle ve-
locity within the possible speed range [1m/s - 5.5m/s] of
industrial trucks.
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Fig. 9. Steering angle and lateral deviation (Linde E30)
for v = 2m/s (top) and v = 4m/s (bottom)
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Figure 9 shows the simulation results of both control
concepts. In the upper part of figure, the time courses of
the control variable (δset) and the controlled variable (ap)
at the vehicle speed v = 2m/s are depicted. Obviously, the
simulation results of both control concepts are comparable.
When the speed is increased to v = 4m/s, the approach
proposed in this paper can show its advantages (lower part
of figure 9). This is due to the fact, that the whole speed
range of industrial trucks is considered within the training
process and the control parameters can be optimized
accordingly. Obviously, neither control scheme ensures
steady-state accuracy in the curve sector of the maneuver
[6sec - 10sec]. The extension of the input layer in the ANN
of the RL controller in combination with the high number
of neurons of the hidden layer, leads to a more complex
ANN with a large number of additional ANN parameters.
This results in a higher degree of freedom in regard to
the design and already improves the control quality for a
speed of v = 2m/s. However, it has a negative effect on the
training efficiency, since 3.6 times as many optimization
steps have to be performed (table 2).

Table 2. Training efficiency

Control Concept Training step Optimization steps

No consideration of v 1st step E30 116822
No consideration of v 2nd step E80 14000
Consideration of v 1st step E30 420558
Consideration of v 2nd step E80 66459

5.2 Investigation of the controller’s adaption

In this subsection, the adaption of both control concepts
to a new industrial truck variant is investigated. To avoid
starting the entire training process for another vehicle
variant from scratch the pre-trained RL controllers of sub-
section 5.1 are used. Both controllers have to be adapted
within the second training step (fine tuning) to the actual
vehicle variant, in this case the Linde E80 and the associ-
ated parameters (table 1). By this method, the number of
optimization steps can be significantly reduced compared
to a training that has to be started from scratch (table 2).
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Fig. 10. Steering angle and lateral deviation (Linde E80)
for v = 2m/s (top) and v = 4m/s (bottom)

The re-trained controllers are evaluated in terms of their
performance for different vehicle velocities in figure 10.
At a speed of v = 2m/s, both controllers are able to
compensate the initial deviation and guarantee a stable
control loop behavior. The increase of the vehicle velocity
value to v = 4m/s results in an unstable closed-loop
behavior applying the retrained controller of Sauer et al.
[2021]. Evidently, the new approach ensures a significantly
higher control quality and guarantees a stabilization of the
industrial truck within the entire speed range.

5.3 Validation of the test results on a modified scenario

Finally, both control concepts are tested on a modified
scenario with a constant vehicle velocity of v = 2m/s.
For this purpose, the presented control approaches will be
evaluated both after the first training step on the nominal
truck variant (subsection 5.1) and after the adaption to
the larger vehicle variant (subsection 5.2).
In contrast to the previous simulation tests, the initial
lateral deviation, i.e. the lateral offset of the vehicle with
respect to path is significantly increased. At the beginning
of the scenario, the controllers have to compensate a
lateral deviation of ap = 0.3m, which results in a high
control signal (figure 11). The controller considering time-
variant parameters during operation, calculates even the
maximum value of the control signal (δset = 1.57rad).
The influence of the tighter curve of this scenario can also
be seen in the figure. The resulting lateral deviation during
the cornering operation [5sec - 10sec] increases compared
to the scenario evaluated in subsection 5.1 and subsection
5.2. Nevertheless, both control concepts are capable of
automatically guiding both the Linde E30 and the Linde
E80 even through the modified simulation test scenario.
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Fig. 11. Steering angle and lateral deviation of Linde E30
(top) and Linde E80 (bottom) for v = 2m/s

6. CONCLUSION AND FUTURE WORK

This paper presents a new control concept for the auto-
matic track guidance of industrial trucks based on AI. By
separating the training process into two steps, existing a
priori knowledge regarding the controlled system can be
integrated. In the first training step, the RL controller’s
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experience is built up using a linear model and the pa-
rameters of a nominal, average vehicle variant. Since the
fundamental lateral dynamic behavior is comparable for
all vehicle variants, this experience does not have to be
performed again from scratch. Therefore, based on the pre-
trained controller, an adaptation to other vehicle variants
can be performed by fine-tuning the control parameters in
a second training step.
A central result of this paper is the extension of the method
in order to consider varying vehicle velocities in the design
procedure. This is realized by adjusting the observation
vector and the ANN of the RL controller. Thus, a stable
behavior of the closed loop can be ensured for an entire
speed range of different industrial truck variants.
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