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Abstract: Energy management strategies significantly impact the fuel economy and component
degradation of fuel cell electric vehicles by distributing the load demand between the battery
and fuel cell systems. Since these are contrasting targets, designing a control strategy that finds
a good trade-off is challenging. Therefore, this paper adopts a rule-based energy management
strategy to show the significant impact of its calibration on fuel consumption and component
degradation. The expected vehicle life is maximized by balancing battery and fuel cell
degradation, assuming that individual component replacement is undesired. Moreover, the
simulation results highlight the trade-off between fuel consumption and expected vehicle life,
revealing that a slight increase in consumption can significantly mitigate the degradation.
The study considers a sequence of six ld driving cycles for robust calibration of the energy
management strategy. However, analyzing individual cycles reveals that even a robust calibration
leads to significantly unbalanced degradation if the vehicle only runs a specific driving cycle.
Therefore, this work proposes two potential research directions to cope with the mentioned
issues and maintain the balance between fuel cell and battery degradation.
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1. INTRODUCTION

The short lifetime of fuel cell electric vehicles (FCEVs)
is hindering their market penetration in the road freight
transport sector. Hence, the degradation mechanisms of
batteries and fuel cells have been studied intensively with
several modeling approaches. Empirical models are widely
used to estimate the lifetime of powertrain components
since they generally present a good trade-off between
accuracy and complexity, as shown in Pelletier et al.
(2017) and Vichard et al. (2021). They introduce stress
indicators that mathematically link operating conditions
to degradation effects, such as battery capacity fade or fuel
cell voltage degradation.

Energy management strategies (EMSs) distribute the load
demand between the fuel cell and battery systems. There-
fore, incorporating degradation models within the EMS
optimization can lead to significant advantages in mitigat-
ing the fuel and battery degradation and, thus, extending
the overall vehicle life. Energy management strategies are

⋆ The financial support by the Austrian Federal Ministry for Dig-
ital and Economic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged. This work has been created
in cooperation with the Austrian research project “FC4HD” (grant
no. 885044).

usually categorized into two groups: optimization-based
and rule-based. Optimization-based strategies as in Fares
et al. (2015) and Fletcher et al. (2016) minimize an objec-
tive function to achieve an optimal power-split. Rule-based
strategies rely on a set of rules created with engineering
experience to perform the power-split, as in Ahmadi and
Bathaee (2015) and Aouzellag et al. (2015). Rule-based
strategies are the common choice in the industry because
of the simpler design and lower complexity than optimal-
based ones, as mentioned in Alyakhni et al. (2021).

This work calibrates a rule-based EMS to show its signif-
icant impact on fuel consumption and component degra-
dation in heavy-duty FCEVs. The strategy relies on the
rules defined in Ferrara et al. (2021), using a formulation
to stay close to optimal fuel cell power and state of charge
(SoC) references. In Zendegan et al. (2021), the authors
further developed the strategy by including a predictive
SoC reference optimized based on basic road information
to improve fuel economy and SoC control. Eventually, the
rule-based EMS adopted in this work requires the calibra-
tion of three main control parameters to define the power-
split. This calibration significantly impacts fuel cell and
battery degradation, which is not considered within the
generation of the predictive references. The overall vehicle
life is estimated by adopting fuel cell and battery degrada-
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tion models from literature and assuming that individual
component replacement is undesired. The study considers
several real-world driving cycles of road freight vehicles
to investigate the correlation between road topographies
and stress indicators of degradation. The simulation re-
sults highlight the trade-off between fuel consumption and
expected vehicle life, revealing that a slight increase in
consumption can significantly mitigate the degradation. A
robust EMS calibration is obtained considering the driving
cycles in sequence. However, analyzing individual cycles
reveals that even a robust calibration leads to significantly
unbalanced degradation if the vehicle only runs a specific
driving cycle.

The rest of this paper is structured as follows: Section
2 describes the simulation framework, including energy
management strategy, real-world driving cycles, battery
capacity fading model, and fuel cell voltage degradation
model. Section 3 analyzes the impact of strategy calibra-
tion on component degradation indicators, the trade-off
between fuel economy and expected vehicle life, and the
balance between the fuel cell and battery degradation.

2. SIMULATION FRAMEWORK

This section describes the simulation framework adopted
to evaluate the impact of EMS calibration on fuel cell and
battery degradation. The simulations consider a heavy-
duty fuel cell electric vehicle and real-world driving cycles
for road freight transport. The rule-based EMS, battery
capacity fading model, and fuel cell voltage degradation
model adopted in this work are described below.

2.1 Vehicle simulation and energy management strategy

The heavy-duty vehicle under consideration has a maxi-
mum weight of 42 tonnes, and its model derives from the
work of Ferrara et al. (2022). The fuel cell system has
a nominal power of 310 kW and the battery a nominal
capacity of 52 kWh. Fig. 1 shows the simulation results
for a real-world driving cycle in terms of vehicle speed
v, route elevation z, battery SoC, battery temperature
Tbat, electric load demand Pel, battery power Pbat, fuel cell
system power Pfc, and hydrogen consumption rate ṁH2

.

The EMS performs the power-split between the fuel cell
and battery systems such that:

Pel = Pfc + Pbat . (1)

This work studies the impact of EMS calibration on
component degradation and fuel economy by adopting
the predictive EMS from Zendegan et al. (2021), which
includes an offline optimization of the predictive SoC and
fuel cell power references and a rule-based strategy for on-
board control. The predictive references are optimized to
obtain minimum fuel consumption while keeping the SoC
between 50% and 80%. On the other hand, the on-board
rule-based EMS performs the power-split by defining the
fuel cell power with the following rules:

Pfc = Pfc,ref + r1(Pel−Pfc,ref )+ r2(SoCref −SoC), (2)

| ˙Pfc| ≤ r3 , (3)

where Pfc,ref and SoCref are the predictive fuel cell power
and SoC references. In (2), the fuel cell setpoint is defined
based on the deviation from the references. Moreover, the

Fig. 1. Simulation of a heavy-duty fuel cell electric vehicle
in a real-word driving cycle.

rate of change of the fuel cell power is limited in (3). The
parameters r1, r2, and r3 are constant and need to be
calibarated to find a good balance between fuel economy,
fuel cell degradation, and battery degradation. For a more
detailed description of the predictive EMS, the reader is
referred to Zendegan et al. (2021).
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2.2 Battery capacity fading model

This work considers the empirical capacity fading model
proposed by Lam and Bauer (2013) to determine the
battery degradation based on the operating conditions.
The model has the distinct advantage that its stress indi-
cators derive from commonly available data of the vehicle,
and their physical interpretation is straightforward. The
parametrization of the original model is valid for a cell
with nominal capacity: Qbat,ref = 1.1 Ah. However, using
an equivalent circuit model, the operating conditions of
the whole battery pack can be easily scaled to a single
cell. Eventually, the total capacity loss is determined as:

∆Qbat = Ah · f1(SoCσ, SoCavg) · f2(Tbat,avg) (4)

f1 = k1 SoCσ ek2 SoCavg + k3 ek4 SoCσ (5)

f2 = e−Ea/R(1/Tbat,avg−1/Tbat,ref ) (6)

where Ah is the charge processed by each cell, SoCavg the
average state of charge, SoCσ the normalized standard
deviation from SoCavg, and Tbat,avg the average temper-
ature. The values of k1, k2, k3, and k4 are taken as in
Lam and Bauer (2013). The reference temperature is:
Tbat,ref = 35◦C. In general, higher SoCavg, SoCσ, and
Tbat,avg determine higher degradation.

The battery cell reaches end of life (EoL) conditions when
the capacity fade is 20% of the nominal one: ∆Qbat,EoL =
0.20 Qbat,ref . The expected battery life for a given driving
cycle is estimated as:

Lbat =
∆Qbat,EoL

∆Qbat
Ldc , (7)

where Ldc =
∫
v dt is the distance traveled by the vehicle in

a driving cycle. Here, it is assumed that the degradation is
always the same if the driving cycle is repeated until EoL
conditions. Additionally, it is assumed that the capacity
loss is distributed equally across all cells, implying that
(7) remains equal for both single-cell and battery pack
calculations.

The comparison of two different EMS calibrations in Fig. 2
shows that energy management strategies significantly im-
pact battery degradation. Here, the expected battery life
resulting from each calibration, Lbat1 and Lbat2 , are com-
puted using (4) and (7). In particular, calibration 1 results
in a significantly lower processed charge and, in turn, three
times higher battery life. Moreover, calibration 1 follows
the predictive SoC reference stricter than the other one,
resulting in lower SoCσ and longer battery life.

2.3 Fuel cell voltage degradation model

Pei et al. (2008) developed a simple empirical model
that evaluates the lifetime of fuel cells in automotive
applications based on the real-word operating conditions of
the vehicle. In particular, the fuel cell voltage degradation
is expressed as a function of load cycling (n1), start-
up/shut-down cycles (n2), low power operating time (t1)
and high power operating time (t2). The relative voltage
loss from the nominal fuel cell voltage is computed as:

∆Vfc = kp(p1n1 + p2n2 + p3t1 + p4t2) , (8)

where p1, p2, p3, p4 are deterioration rates and kp is
an accelerating coefficient which compensates differences
between laboratory and real-world operating environment.

Fig. 2. Comparison of different calibration in terms of SoC
profile and the stress indicators for battery degrada-
tion.

However, in this paper, ideal conditions are assumed, i.e.,
kp = 1. Due to the EMS design, all investigated driving
cycles only have one start-stop cycle (n2 = 1). The low
power threshold is 10% of the nominal fuel cell power,
whereas the high power one is at 80%, as in Ferrara et al.
(2022). Load cycling are defined as the number of load
changes from low power to the rated power of the fuel cell
and are calculated as:

n1 =

∫
|Ṗfc| dt

2Pfc,nom
. (9)

The end-of-life criterion is ∆Vfc,EoL = 10%, at which the
performance of the fuel cell start to deteriorate signifi-
cantly faster. The expected fuel cell life is estimated as:

Lfc =
∆Vfc,EoL

∆Vfc
Ldc , (10)

similarly to the expected battery life calculation in (7).

The impact of the different EMS calibrations on fuel cell
degradation is shown in Fig. 3. In this case, the difference
in fuel cell operation is even more evident than in the
previous comparison. In particular, the expected fuel cell
life resulting from calibration 2 is almost seven times
higher than the other. The main reason is that the load
cycling is significantly lower for calibration 2. Additionally,
the low and high power operating times are negligible.

Comparing the results shown in Fig. 2 and Fig. 3, it is
evident that the different calibrations have a contrasting
effect on battery and fuel cell life. Comparing these two
extreme cases paves the way for a deeper analysis of
the EMS calibration impact on the degradation of both
components. Eventually, the calibration target is to find a
good trade-off between fuel economy, battery life, and fuel
cell life.
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Fig. 3. Comparison of different calibration in terms of fuel
cell power profile and the stress indicators for fuel cell
degradation.

Table 1. Characteristics of the real-world driv-
ing cycles under investigation.

Driving cycle ID number

1 2 3 4 5 6

Vehicle mass (t) 28 35 36 41 42 42
Average speed (km/h) 61 79 80 77 82 69
Traveled distance (km) 173 347 161 188 238 385
RPA (m/s2) 0.09 0.03 0.03 0.04 0.03 0.01
Total climb (m/km) 9.1 7.2 3.2 3.1 5.3 7.6
Max-min elevation (m) 293 694 73 267 207 1526
Average load (kW) 84 136 139 126 155 123

3. IMPACT OF EMS CALIBRATION ON
COMPONENT DEGRADATION

Six different real-world driving cycles for freight road
transportation were selected from the work of Ferrara
et al. (2021) to conduct the powertrain degradation study,
including different speed and elevation profiles and varying
vehicle mass. Table 1 reports meaningful characteristics
of the driving cycles under investigation, such as vehicle
mass, average speed, traveled distance, relative positive ac-
celeration (RPA), total climb, maximum minus minimum
elevation, and average electric load. Driving cycle no. 1
corresponds to final delivery in a suburban environment,
with the lowest vehicle mass and average speed but the
highest RPA (i.e. heavy traffic). The remaining cycles show
low RPA (i.e. stable cruising in motorways). In particular,
the last driving cycle stands out for its elevation difference,
as it corresponds to a motorway in the Alps. The driving
cycle no. 5 is the one corresponding to the simulation
results shown in Fig. 1.

3.1 Analysis of battery and fuel cell degradation indicators

In order to investigate the influence of different strategy
parametrizations on battery and fuel cell degradation,
12000 strategies with different combinations for r1, r2,
and r3 have been simulated. Fig. 4 shows the boxplot

Fig. 4. Boxplot distribution of the stress indicators for
battery degradation.

distribution of the stress indicators for battery degrada-
tion, revealing that while the variance in the average SoC
(SoCavg) over a full driving cycle remains similar, the
variation of the normalized standard deviation (SoCσ) and
Ah-throughput for cycles with a higher total climb like 1,
2, 5, and 6 increases. It indicates that in the case of uphill
driving, the efficacy of SoC control is more sensitive to
changing parameters in the rule-based strategy compared
to cycles with relatively flat elevation profiles. Further, the
distribution of the average temperature (Tbat,avg) shows
little variance across all six cycles despite some outliers
between 36 and 40 ◦C. When considering only the battery
system, it can be concluded that road profiles with dis-
tinct elevation profiles show a large degree of freedom in
reducing battery degradation stress indicators.

Fig. 5 presents the distribution of the fuel cell stress
indicators. The influence of start-stop cycles is negligible
under the assumption that the fuel cell only starts at the
beginning and stops operating at the end of each driving
cycle. However, the variance of load-cycling is significant,
indicating improvement potential regarding fuel cell life
even if degradation due to high and low power operation
is neglected. Only cycle 6 stands out with a small variance
compared to the other cycles caused by the considerable
distance of driving downhill during which the battery
recharges through regenerative braking, and the fuel cell
is idling most of the time. Overall, it is evident that the
complexity of reducing system degradation increases when
multiple driving cycles are considered.
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Fig. 5. Boxplot distribution of the stress indicators for fuel
cell degradation.
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Fig. 6. Trade-off between fuel consumption and vehicle life
(top); and battery and fuel cell life (bottom).

3.2 Trade-off between vehicle life and fuel consumption

This work considers the vehicle life as the minimum
between the battery and fuel cell life:

Lveh = min(Lbat, Lfc) . (11)

Therefore, it is assumed that the individual replacement
of one of the components is undesired. On the other
hand, it is better to balance the component degradation to
maximize the overall vehicle life. The impact of different
EMS calibrations is analyzed for a combined driving cycle,
consisting of a sequence of the others. This approach was
adopted to increase the robustness of the EMS calibration
to unknown driving cycles.

The trade-off between fuel consumption and vehicle life is
analyzed by defining a multi-objective cost function as:

J = −α Lveh,norm + (1− α)H2,norm , (12)

following the approach described by Yang (2014). The
vehicle life and fuel consumption are normalized between
0 and 1, obtaining Lveh,norm and H2,norm, respectively.
The parameter α is a weighting parameter to define the
trade-off between vehicle life and fuel consumption.

The overall simulation results for all the EMS calibrations
investigated are depicted in Fig. 6. The top plot shows
the trade-off between fuel consumption and vehicle life,
whereas the bottom plot shows the trade-off between
battery and fuel cell life. The optimal strategy calibration
for each α value is located on the Pareto frontier, which is
defined by minimizing (12) for 0 ≤ α ≤ 1. The vehicle life
can increase significantly for 0 ≤ α ≤ 0.5, with a relatively
small increase in fuel consumption. On the other hand, for
α > 0.5, the lifetime can be slightly increased but with
a substantial cost in fuel economy. In the bottom plot of
Fig. 6, it is shown that the cases with α equal to 0.5 and
1 have both balanced component life. On the other hand,
it is evident that some EMS calibrations can significantly
increase the life of the battery or fuel cell individually, but
not simultaneously.

Table 2. Optimal trade-off between fuel con-
sumption and vehicle life.

α H2 cons. (kg/100km) Vehicle life (km)

0 10.14 247.000
0.5 10.33 (+1.9%) 465.000 (+88%)
1 11.11 (+9.6%) 519.000 (+110%)

The optimal fuel consumption and vehicle life for selected
values of α are reported in Table 2, indicating the relative
change compared with the minimum fuel consumption
tuning. In particular, vehicle life can increase by 88% with
a 1.9% increase in fuel consumption or even by 110% with
a 9.6% consumption increase.

Lastly, this work investigates the robustness of the optimal
EMS calibration with α = 0.5 on the individual cycles,
assuming that the vehicle always runs them individually.
In particular, the question is if the calibration that ensures
balanced life on the sequence of all cycles retains balanced
life when considering the cycles individually. The results
of this investigation are shown in Fig. 7. Here, it is evident
that for some driving cycles (i.e. no. 3, 4, and 6), there
is a significant imbalance in component life, even though
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Fig. 7. Robustness to unknown driving conditions of the
optimal EMS calibration for balanced component life.

the driving cycles were considered on average for the
calibration. Such an issue could eventually be even worse in
driving cycles that are entirely unknown during the EMS
calibration process.

4. CONCLUSION

This paper shows the significant impact of rule-based
energy management strategy calibration on battery and
fuel cell degradation and fuel consumption for FCEVs.
Component life is estimated with parametrized empirical
degradation models from the literature that link degrada-
tion effects to stress indicators. The significant variance in
stress indicators for different calibrations and road profiles
highlights the complexity of choosing a single calibration
that can increase battery and fuel cell life for different
operating conditions.

Analyzing the vehicle life, the study balances component
degradation to find a robust trade-off calibration between
component degradation and fuel economy for six real-
world driving cycles. It turns out that a single EMS
calibration can significantly extend the vehicle life with
a limited impact on fuel consumption. However, further
robustness analysis of individual cycles reveals unbalanced
degradation of components if the vehicle only operates on
specific cycles.

Therefore, this paper proposes two potential research
directions to cope with the unbalanced degradation that
inevitably results from unknown driving cycles. Firstly,
degradation unbalance could be prevented with cycle-
specific EMS calibrations whenever a new destination is
planned for the vehicle. Secondly, health-conscious EMS
could be designed to adapt the calibration to the current
fuel cell and battery degradation state to reestablish a
balanced component life.
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