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Abstract: Thermal management is essential in electric vehicles to preserve battery life. In
particular, avoiding temperature peaks is critical to prevent accelerated degradation. The
battery thermal management problem is crucial in fuel cell electric trucks due to the heavy
vehicle weight, especially on mountain or hilly roads. Therefore, this paper proposes an
energy management strategy that reduces battery degradation by limiting its usage at high
temperatures to allow its cooldown and avoid peaks. The energy management strategy is
adaptive because the main control parameters for the fuel cell/battery power-split are adjusted
depending on the battery temperature. The comparison between adaptive and non-adaptive
strategies proves the effectiveness of the proposed formulation in avoiding temperature peaks
without hindering fuel consumption or fuel cell degradation. The robustness of the proposed
energy management strategy is validated with simulations of several real-world driving cycles
with various speed and elevation profiles.
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1. INTRODUCTION

Extending the lifetime of powertrain components is one
of the most challenging issues for the advancement of fuel
cell electric vehicles. In the last years, increasing research
effort has been focused on designing control strategies
for optimal operation of powertrain components to find
a good trade-off between system efficiency and lifetime.
In this context, energy and thermal management are the
control functions with the highest impact on the overall
performance of heavy-duty fuel cell vehicles, especially on
mountain roads, due to their massive weight. In particular,
energy management is essential to obtain a suitable control
of the battery state of charge (SoC) without hindering
fuel consumption. At the same time, battery thermal
management is critical to keep the temperature within a
safe operating range to prevent accelerated degradation
and preserve battery life.
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In Li-ion batteries, the cell temperature influences some
of the leading battery degradation mechanisms, such as
SEI growth, lithium plating, and active material dissolu-
tion, as indicated in Reniers et al. (2019). In particular,
higher temperatures determine faster (unwanted) chemi-
cal reactions and, thus, accelerated degradation. Reniers
et al. (2019) also shows that different degradation models
respond very differently to varying operating conditions.
Moreover, the degradation mechanisms depend highly on
the cell chemistry, making battery degradation modeling
challenging and hard to generalize. Alyakhni et al. (2021)
present a review of battery degradation mechanisms and
modeling oriented towards health-aware energy manage-
ment strategies. Lam and Bauer (2013) show that the
capacity fade rate of a battery operating at 40◦C is more
than twice higher than at 30◦C. Zia et al. (2019) show
that the battery cycle life drastically drops for temperature
higher than 60◦C. Hannan et al. (2017) show that, to
improve battery cycle life, the best temperature operat-
ing region of Li-ion batteries is between 15◦C and 45◦C.
Diao et al. (2019) experimentally investigate the effect of
temperature on capacity degradation, showing extremely
poor performance at 60◦C and already compromised per-
formance at 45◦C.
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A literature review of studies on energy management
strategies (EMSs) for fuel cell battery vehicles is pro-
posed in Lü et al. (2020). Recently, predictive EMSs for
heavy-duty fuel cell vehicles have been studied to find a
good trade-off between fuel consumption, SoC control, and
powertrain component degradation: Ferrara et al. (2021)
use model predictive control to reduce fuel cell transients
while retaining high system efficiency in real-world driv-
ing cycles. Zendegan et al. (2021) propose a dual-stage
predictive control scheme based on the offline optimiza-
tion of a predictive SoC reference, which is then used for
on-board energy management. Some works have studied
the interaction between energy and thermal management,
including the battery temperature within the power-split
optimization problem: Padovani et al. (2013) use Pontrya-
gin’s Minimum Principle to solve an optimization problem
that includes a soft constraint on battery temperature.
Amini et al. (2018) develop a model predictive control
to optimize the energy management while keeping the
battery temperature within defined constraints. Song et al.
(2021) offer a review of the temperature effect in fuel cell
electric vehicles, pointing out that most energy manage-
ment strategies neglect the role of temperature.

This paper proposes an innovative energy management
strategy that adapts to the battery temperature to limit its
usage in critical conditions and avoid temperature peaks
without compromising system efficiency and SoC control.
The adaptive EMS is implemented by suitably adjust-
ing the main control parameters for the fuel cell/battery
power-split depending on the battery temperature. The
simulations of real-world driving cycles prove that the pro-
posed solution effectively avoids temperature peaks over
45◦C, which is considered the threshold for accelerated
battery degradation. The effectiveness and robustness of
the adaptive EMS are validated in 13 selected real-world
driving cycles, which represent different speed, elevation,
and vehicle mass scenarios for road freight vehicles. The
comparison with a non-adaptive EMS shows significant
improvements in terms of battery thermal management.
Not only the temperature peaks are avoided, but also
the battery operation in its optimal temperature range is
increased.

The remainder of the paper is structured as follows.
Section 2 outlines the fuel cell electric vehicle simulation
framework with a particular focus on the battery thermal
management system. Section 3 describes the proposed
adaptive energy management strategy. Section 4 analyzes
the simulation results and highlights the benefits of the
adaptive EMS compared to the non-adaptive one.

2. SIMULATION OF FUEL CELL ELECTRIC TRUCK

This study evaluates the performance of a heavy-duty ve-
hicle with nominal fuel cell system (FCS) power of 310 kW
and battery capacity of 53 kWh. The simulation frame-
work considers realistic driving scenarios and a complex
vehicle model, which was extended from Ferrara et al.
(2021) to include cooling systems and thermal dynamics.
This section offers only a brief model description because
detailed modeling of vehicle components is beyond the
scope of the paper.

The vehicle acceleration is calculated as in (1), adopting
longitudinal dynamics and forward facing modeling ap-
proach. Here, mv is the vehicle mass, v is the speed, Pw

the power at the wheels, and Fres the resistant force.

mv v̇ = Pw/v − Fres(v, α) (1)

The resistant force considers the aerodynamic drag, the
road slope α, and the wheels rolling friction, as in Ferrara
et al. (2021). The power at wheels is calculated based on
the electric motor power Pm using (2). The total efficiency
ηT includes all the power losses of the motor, inverter, and
drivetrain.

Pw = Pm η
sgn(Pm)
T (2)

The electrical motor power is determined depending on the
fuel cell and battery power as in (3). Here, the auxiliary
power Paux includes the radiator fan losses for fuel cell
cooling, the chiller compressor losses for battery cooling,
and all the external loads outside of the electric powertrain
(e.g. cabin conditioning, power-steering pump).

Pm = Pfcs + Pbat − Paux (3)

The battery system considered in this work has the highest
efficiency in the temperature range between 35◦C and
40◦C. Indeed, the battery cell characteristics (e.g. the
internal resistance) depend on the temperature. On the
other hand, this study assumes that 45◦C is the threshold
for safe operation, and after that, the battery degradation
is accelerated. The battery thermal management system
(BTMS) is divided into two cooling circuits, as depicted in
Fig. 1. The battery pack exchanges heat with oil flowing
through liquid cooling plates. At the same time, the oil
exchanges heat with a coolant fluid, which is cooled down
by a chiller system. A hysteresis controller regulates the
chiller operation depending on the battery temperature.
In particular, the chiller is switched on - at maximum
cooling power - when the battery temperature reaches
40◦C and off at 35◦C. The thermal dynamics of the BTMS
are described in (4), assuming that the battery, oil, and
coolant temperatures are uniform. Cbat is the thermal
capacity of the battery system. hbo is the heat exchange
coefficient at the battery-oil interface.

Cbat Ṫbat = Q̇loss − hbo(Tbat − Toil) (4a)

Coil Ṫoil = hbo(Tbat − Toil)− hoc(Toil − Tcool) (4b)

Ccool Ṫcool = hoc(Toil − Tcool)− Q̇cool (4c)

Oil

Coolant

Chiller

Q̇cool

Hysteresis
controller

Battery system Q̇loss

Fig. 1. Layout of the battery thermal management system.
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Fig. 2. Simulation results of the battery thermal manage-
ment system.

The simulation results in Fig. 2 help visualize the cooling
system dynamics during a driving cycle. The coolant
quickly reaches the oil temperature when the chiller is
off, showing that battery, oil, and coolant have different
thermal capacities. The second tile of the figure shows
that the maximum cooling power is not constant, as it
depends (among other things) on the coolant temperature.
The third tile shows the battery heat generation due to
ohmic losses, which reach significant peaks at high C-rate
operation. Eventually, the simulation results show that the
cooling system is not powerful enough to avoid battery
temperature peaks.

Since it is challenging to model the degrading effect of tem-
perature peaks, the battery capacity fade is not directly
quantified in this work. On the other hand, the maximum
battery temperature represents the key performance in-
dicator, although the specific fuel consumption and fuel
cell voltage degradation are also considered. In (5), a
quasi-static model is adopted to calculate the hydrogen
consumption of the fuel cell system. The efficiency ηfcs
includes the stack, balance of plant components, and con-
verter losses. Therefore, Pfcs represents the net FCS power
after all these losses. The maximum fuel cell efficiency is
55% at 56 kW, with an efficiency characteristic similar to
the one in Ferrara et al. (2020).

ṁH2
= Pfcs/(ηfcs LHVH2

) (5)

The fuel cell voltage degradation, ∆Vfcs, is calculated
in (6) considering start-up/shut-down cycles, dynamic
loading, low-power and high-power operation, using the
quick evaluating method developed by Pei et al. (2008).

∆Vfcs = ∆Vfcs,ss +∆Vfcs,dl +∆Vfcs,lp +∆Vfcs,hp (6)

It is assumed that the fuel cell system can idle at zero
net power to avoid shut-down cycles (consequently, there
is one start-up/shut-down cycle per driving cycle). The
thresholds for low and high-power operation are 10% and
80% of the fuel cell nominal power, as in Ferrara and
Hametner (2021).

3. ADAPTIVE ENERGY MANAGEMENT
STRATEGY

This study adopts the predictive energy management
system developed by Zendegan et al. (2021), proposing an
improved formulation of the control strategy to avoid high
battery temperatures and limit accelerated degradation.
The predictive EMS consists of two control stages: route-
references optimization and on-board control. Every time
a new route is inserted into the navigation system, the
expected electric load is estimated based on the speed
and elevation forecasts over the entire route. The power-
split is then optimized using quadratic programming to
find the best trade-off between hydrogen consumption and
SoC control. The optimization results are saved as maps
of the SoC and FCS power references. Then, an on-board
control strategy uses the predictive references to perform
the power-split during the driving cycle. For more details
on the predictive energy management system, refer to
Zendegan et al. (2021). However, it should be mentioned
that the battery temperature is not considered within the
optimization problem to reduce its complexity.

A rule-based EMS defines the fuel cell power setpoint as:

Pfcs = Pref + r1(Pel − Pref) + r2(SoCref − SoC) , (7)

to provide the electric load Pel demanded by the driver
during the driving cycle. Even though the control strategy
consists of a simple rule, the energy management is still
highly effective thanks to the predictive references Pref and
SoCref. In this study, the references are optimized to have
the SoC within the 50%-80% range. Moreover, the fuel cell
power is subject to the constraints defined in (8). Here,
the rate of change is limited to reduce the degradation
associated with transient fuel cell operation.

|Ṗfcs| ≤ r3 (8a)

0 ≤ Pfcs ≤ Pfcs,max (8b)

Pbat,min ≤ Pel − Pfcs ≤ Pbat,max (8c)

The battery system operates as a buffer between the
electric load and the fuel cell power. Therefore, its setpoint
is defined to ensure that the demanded load is always
provided by the two power sources:

Pbat = Pel − Pfcs . (9)

This paper proposes an innovative solution to avoid bat-
tery temperature peaks through an adaptive energy man-
agement strategy. In particular, at critical temperatures,
the power-split criterion changes from optimal powertrain
operation to low battery usage, limiting the heat genera-
tion due to ohmic losses and allowing its cooldown.

The EMS is adaptive because the main control parameters
for the fuel cell/battery power-split depend on the battery
temperature. Therefore, the parameters in (7) and (8) are
implemented as a function of the battery temperature:

r1 = r1(Tbat), r2 = r2(Tbat), r3 = r3(Tbat) . (10)

The characteristics of the parameters are defined based
on heuristic considerations to avoid temperatures above
45◦C. It is essential to understand that the most critical
power-split parameter is r1 because it significantly impacts
the battery operation. Indeed, combining (7) and (9), the
battery power setpoint becomes:
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Fig. 3. Characteristics of the adaptive EMS parameters as
function of the battery temperature.

Pbat = (1− r1)(Pel − Pref)− r2(SoCref − SoC) . (11)

When r1 = 1, the fuel cell is operated in load-follower
mode. On the other hand, the battery operates to:
− provide the loads exceeding the maximum FCS power,
− absorb regenerative braking energy,
− stay close to the optimal SoC reference.

This study proposes the adaptive power-split parameter
characteristics depicted in Fig. 3, which allow for a gradual
reduction of the battery usage for increasing temperatures.
The values were heuristically tuned until the battery tem-
perature stayed below 45◦C. In particular, the parameter
r1 linearly changes from 0 (at 40◦C) to 1 (at 43.5◦C), which
marks the transition to load-follower operation. The pa-
rameter r2 is slightly lower at high temperatures to reduce
the SoC reference tracking term in (11). The parameter
r3 rapidly increases to allow faster fuel cell transients for
better load-follower energy management.

4. SIMULATION RESULTS

This section offers a detailed analysis of the simulation
results to highlight the benefits of the adaptive EMS in
realistic driving scenarios compared with a non-adaptive
strategy. First, Fig. 4 shows the simulation results of a real-
world driving cycle in terms of speed, elevation, fuel cell
power, SoC, battery temperature, and cooling power. The
figure provides a good visualization of the predictive en-
ergy management references adopted in (7). In particular,
the SoC is kept within the 50%-80% range by adequately
charging the battery in anticipation of long uphills and
discharging it before the downhills to maximize regenera-
tion. The battery temperature and cooling power clearly
show a behavior typical of hysteresis control. Moreover,
at minute 110, the fuel cell operates in load-follower mode
(r1 = 1) to limit the battery usage, successfully keeping the
temperature below the accelerated degradation threshold.

Fig. 4. Simulation results of a real-world driving cycle
using the adaptive EMS to avoid temperature peaks
above the accelerated degradation threshold.

It is meaningful to compare the results with those of a non-
adaptive EMS, which has constant parameters in (7) and
(8). For a fair comparison, the constant values are obtained
from the corresponding characteristics in Fig. 3 at 40◦C.
The comparison is depicted in Fig. 5 using red lines for
the non-adaptive EMS and blue lines for the adaptive one.
The figure shows evident benefits of the adaptive EMS to
avoid the temperature peaks at minutes 30, 40, 90, 110,
and 190. In particular, by briefly changing the fuel cell
power in these events, the adaptive EMS reduces the heat
generation due to ohmic losses and allows the battery to
cool down.
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Fig. 5. Comparison between the adaptive and non-
adaptive energy management strategies.

The robustness and effectiveness of the adaptive EMS are
validated in 13 selected driving cycles, which represent dif-
ferent speed, elevation, and vehicle mass scenarios for road
freight vehicles. The left side of Fig. 6 shows performance
indicators related to the battery thermal management,
which are the maximum temperature and the timeshare
above 45, 43, and 40◦C. For all cycles, the adaptive EMS
can keep the battery temperature below the accelerated
degradation threshold, which this work assumed as the
design target. It can be expected that such a result has sig-
nificant benefits for battery life because, depending on the
cycle, the non-adaptive strategy operates above 45◦C for
4 to 13% of the total time. Moreover, the timeshare above
43◦C, in which the adaptive EMS operates the fuel cell in
load-follower mode, is negligible. The operation between
35◦C−40◦C, which is optimal for the battery, is increased.
The right side of Fig. 6 compares the specific fuel consump-
tion (SFC) and voltage degradation of the two strategies.
The SFC considers the hydrogen consumption of the fuel
cell system and the equivalent battery consumption due
to the SoC change compared to the initial charge. The
results show that the adaptive EMS is also beneficial in
terms of SFC, which is counterintuitive because the load-
follower operation is generally less efficient. However, in
this case, the SFC improvement is due to two reasons.
Firstly, the battery operates longer in its optimal temper-
ature range. Secondly, the total ohmic and battery cooling

losses are reduced, resulting in lower energy consumption.
On the other hand, the adaptive EMS impact on fuel cell
voltage degradation compared to the non-adaptive strictly
depends on the cycle. However, the overall degradation
is slightly higher (approximately 3%) for the adaptive
EMS because the load-follower mode generally results in
higher cycling and high-power operation. This result was
expected because mitigating fuel cell and battery degrada-
tion are contrasting targets, and improving the life of one
component usually results in lowering the other one.

5. CONCLUSION

This paper proposed an innovative solution to exploit
the interaction between energy and thermal management
in fuel cell electric trucks. The simulation results show
that the proposed adaptive energy management strategy
developed can effectively avoid battery temperature peaks
by limiting its usage in critical conditions. Although the
adaptive control parameters are designed based on heuris-
tic considerations, the effectiveness of the adaptive EMS
is proved in multiple cycles, confirming the robustness of
its design.

A natural follow-up investigation to this work is the
validation of the adaptive EMS on real components to
assess the benefits on degradation and overall powertrain
performance. Another research direction is the design of
energy management strategies that are also adaptive to
the state of health of the powertrain components. In this
way, for example, if the expected fuel cell life is lower than
the battery life, the energy management strategy could be
adapted to rebalance the degradation of the components.
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