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Abstract: The estimation of battery parameters and states at both battery pack and cell
levels are studied using the extended Kalman filter (EKF). The estimation results are evaluated
with Chevy BOLT electric vehicle data. The cell level estimation when applying EKF is more
challenging and an appropriate scaling of cell parameters is required, due to the fact that the
current and voltage values of a cell are quite different in magnitude. This estimation study also
shows that the cell-level parameter estimation can provide important health information to a
battery management system (BMS) for diagnostics and prognostics. The cell-level estimates are
then used to predict the voltage limited battery pack power available to a vehicle when a weak
cell or droop cell occurs. This power limit can avoid over-discharging a droop cell and protect
it from further damage.
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1. INTRODUCTION

The current design of battery packs used in electric vehi-
cles are comprised of cells connected in parallel and in
series. This arrangement escalates the cell voltage and
energy capacity to meet the power requirement. The role
of the BMS becomes indispensable for controlling the
charging and discharging of the cells in a safe and op-
timized manner according to the battery electrochemical
characteristics and the motor load requirements. During
operations, the battery pack status exhibits short and
long-term changes at all levels. Therefore, the functionality
of the BMS depends on an accurate estimate of key battery
system parameters.

The electrochemical status of the battery is continually
changing with battery temperature, load current, state of
charge (SOC), and aging conditions. All impact battery
safety, life span, and performances, including customer on-
board indicators of SOC, power and battery remaining
energy and battery health. This requires a robust BMS
design that can monitor battery status by estimating its
corresponding model parameters in real-time. Current bat-
tery model parameter estimation methods fall mainly into
three categories: the Luenberger-type observer method
(Hu, 2010), Lin (2012), the sliding-model observer method
(Kim, 2006), (Klein, 2013), and Kalman filter method
(Plett, 2004), (Rauh, 2013). Among these methods, the
extended Kalman filter (EKF) stands out due to its intrin-
sic prediction-correction mechanism which makes the filter
insensitive to modeling error and measurement noises.
However, the EKF estimation stability is impacted by
the non-linearity of a battery system and battery current
excitation. To guarantee the estimation stability in the
BMS application, the parameter boundaries and gradient
limits are imposed (GM, 2016), and calibrating these val-
ues require experiences.

For production application, battery parameter estimation
at the pack level using EKF is a matured technology.
However, limited studies have been done for EKF im-
plementation in battery cell-level parameter estimations,
e.g. (Zhang, 2021). The individual cells that comprise
the battery pack will exhibit mismatches in capacity,
self-discharge rate and impedance over time. These mis-
matches among cells can lead to limiting the total usable
energy and the power delivered by the battery pack. Most
BMS designs treat the battery system as a lumped battery
model, which lacks performance impact of each individual
cell state of health.

To further enhance the BMS capability to achieve better
safety and longer life, this paper studied how to estimate
battery pack available power without violating cell voltage
and current limits. This limit could be violated without
proper power limit estimation when a cell ages or a
malfunction cell occurs. The presented method for power
estimation considering a cell SOH status shall avoid over-
discharging a droop cell below its voltage limit, which
could further damage the cell or leads to a thermal event.
The state estimation of both battery pack and cells using
EKF are applied to identify both battery pack and cell
models, which are used to estimated fault tolerant battery
power for the purpose of safe vehicle torque arbitration.

2. BATTERY EQUIVALENT CIRCUIT MODEL

2.1 Pack-level Model

A battery model characterizes the relationship between the
terminal voltage and current value of a single battery pack,
as shown in Fig. 1, with three resistors, two capacitors, and
an open-circuit voltage with hysteresis compensation. The
ohmic resister, Rohmic, represents the internal resistance
modeling heat loss during charging and discharging. The
resistor and capacitor pairs, i.e.Rct1||Ccdl1 andRct2||Ccdl2,
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Fig. 1. Equivalent circuit model of a lithium-ion battery

simulate the internal electrochemical charge-transfer and
diffusion phenomenon. The voltage source, VO, simulates
the battery open-circuit voltage, which depends on the
battery SOC and temperature. The hysteresis polariza-
tion effect on battery voltage is modeled (in a standard
production software) by the component of VH . Through
a hybrid pulse power characterization (HPPC) test, those
parameters can be characterized at different SOC levels
and temperature conditions.

2.2 Cell-level Model

The pack-level model is often used for predicting overall
energy storage and battery performance. When consider-
ing the diagnosis of battery performance relating to the
electrochemical process in each cell, their internal proper-
ties are more important, which are affected by physical
structure, temperature distribution, unbalance between
cells, aging, etc. Therefore, a cell-level model can provide
more detailed and relevant information for a BMS. Mon-
itoring the health of individual cells is critical in order
to prognose and protect a battery pack health, to limit
the maximum charging/discharging current and predict
accurate SOC, to extend the life of a battery pack.

The cell-level behaviors provide detailed information of a
battery pack. The SOC of each cell may differs from others.
The aging status among cell-level parameters could be
used for prognosis and prediction of the pack life-cycle or
driving range. Since a failure in a battery cell would limit
total pack energy efficiency, once diagnosed, the relevant
module should be maintained or replaced.

The pack-level and cell-level battery equivalent circuit
model share the similar model structure as shown in Fig. 1
and the cell-level model governing equation can be written
as follows:

VT cell = VO + VH +RohmicIt

+Rct1(1− e
−δt

Rct1Cdl1 )It−δt + e
−δt

Rct1Cdl1 (V1)t−δt

+Rct2(1− e
−δt

Rct2Cdl2 )It−δt + e
−δt

Rct2Cdl2 (V2)t−δt

(1)

where, subscript t and δt represent time t and the sampling
time respectively. The equivalent circuit model (ECM)
has nonlinearities in terms of current input and termi-
nal voltage output. The second order charge-transfer and
diffusion follow exponential functions, and the hysteresis
has nonlinear character. All the parameters in the model
are correlated to battery temperature in a nonlinear form.
For simplicity, these nonlinear relationships are not ex-
plicitly modeled in equation (1) and they are represented
by lookup tables. But the nonlinear phenomena challenge
battery parameter estimation.

3. BATTERY STATE ESTIMATION USING
EXTENDED KALMAN FILTER (EKF)

The battery parameters are subjected to external environ-
ment temperature, operation load, and internal material
aging from lithium plating, heat transfer, cell structure
deformation and other factors. The purpose of the BMS
is to protect the battery pack and maintain the best
performance according to the electrochemical character
in every cell. When serious malfunction happens, BMS
should derate battery pack power to avoid catastrophic
failure. To provide this functionality in the BMS, the
extended Kalman filter is utilized to identify the battery
parameters in real-time.

3.1 Extended Kalman Filter

Some interesting variables are not directly measurable,
such as VO, VH , Vohmic, V1, V2, etc. They can only be ob-
served through an observer, like EKF. Only the terminal
current, I(k), terminal voltage, VT (k) and temperature,
T (k) of the battery model in equation (1) are measurable.
The EKF uses the measurable variables to estimate the
interesting internal states. The real-time battery current,
terminal voltage and temperature also contain measure-
ment noises. The battery parameter estimation is an iter-
ative process, starting from the initial measurements I(0),
VT (0) and T (0).

For a nonlinear system in the following discrete state-space
form (Wampler, 2017):

xk = f(xk−1, uk) + wk, wk ∼ N(0, Q)
zk = h(xk, uk) + vk, vk ∼ N(0, R)

(2)

The online estimation begins with an initial condition
or pre-measurement state (named as the ‘a priori ’ in
literature), x̂−

k . In the iterative process, x̂−
k is related to

the previous step, x̂+
k−1, using the nonlinear system model

(2). Then the a priori and its covariance propagation can
be expressed as following:

x̂−
k = f(x̂+

k−1, uk)

P−
k = FkP

+
k−1F

T
k +Q

(3)

where, x̂−
k is the a priori state estimate for the step k; x̂+

k−1
is the a posteriori state estimation for step k−1; uk is the
input for the step k; f is the nonlinear state-space function;
Fk is the Jacobian of f with respect to x; P−

k is the a

priori state covariance for step k; P+
k−1 is the a posteriori

state covariance for step k−1; Q is the state process noise
covariance estimate. Also, the interested process output
can be predicted according to model (2):

ẑk = h(x̂−
k , uk)

yk = zk − ẑk
(4)

where, zk is the measurement of process output for step
k; ẑk is the prediction of process output for step k; yk is
the model error of the estimation; Then the Kalman filter
gain is determined by.

Kk = P−
k HT

k S
−1
k

Sk = HkP
−
k HT

k +R
(5)

where, Sk is the output model estimate covariance for step
k; Hk is the Jacobian of h with respect to x; P−

k is the a
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priori state covariance estimate for step k; R is the output
covariance; Kk is the Kalman filter gain. The a posteriori
state estimate at step k, x̂+

k is defined by the combination
of a priori and model error:

x̂+
k = x̂−

k +Kkyk
P+
k = (1−KkHk)P

−
k (1−KkHk)

T +KkRKT
k

(6)

The Kalman filter gain, Kk, is an optimal and unbiased
estimation of the process if the process is linear. When
the process is nonlinear, like the battery application, the
linearized model is used for Kalman filter gain derivation.

3.2 Battery State and Parameter Estimation Using EKF

By extending the state vector x with the parameter vector
θ = θ(t), the system model becomes (Wampler, 2017):

x̂k =

(
f(xk−1, uk)

θ

)
ẑk = h(xk−1, uk)

(7)

From the ECM (1), above battery system model equation
can be expressed in state-space form as:

x̂1[k] = f1(xk−1, uk) = e
− δt

Rct1Cdl1V1[k−1] +
δt

Cdl1
I[k]

x̂2[k] = f2(xk−1, uk) = e
− δt

Rct2Cdl2V2[k−1] +
δt

Cdl2
I[k]

x̂3[k] = f3(xk−1, uk) = R0[k − 1]
x̂4[k] = f4(xk−1, uk) = R1[k − 1]
x̂5[k] = f5(xk−1, uk) = R2[k − 1]
x̂6[k] = f6(xk−1, uk) = C1[k − 1]
x̂7[k] = f7(xk−1, uk) = C2[k − 1]
x̂8[k] = f8(xk−1, uk) = Voc[k − 1]
ẑ[k] = h(xk−1, uk)

= kvVoc[k] +KvV1[k] +KvV2[k] +Kv
R0[k]

KR
I[k]

(8)

where, the system states are x1 = V1, x2 = V2, and
the model parameters extended as states, x3 through x8;
x8 = Voc is modeled as a constant, as it changes very
slowly withing dynamic response time of battery models.
The system output is z = VT . The states are scaled into a
domain of same scale for numerical stability consideration.

R0 = krRohmic

R1 = krRct1

R2 = krRct2

C1 = kcCdl1

C2 = kcCdl2

(9)

where, the scaling factors kr, kc and Kv are adjusted for
EKF design.

The nonlinear battery system is linearized with respect to
the operating condition state at each step to obtain the
Jacobian matrices of the system (7):

Fx =
∂f

∂xk
(10)

Hx =
∂h

∂xk
(11)

The EKF estimate may diverge if the initial estimates are
not sufficiently accurate (Ljung, 1979). To improve the
stability of EKF estimation, the parameters’ boundaries
can be set within physically meaningful limits.
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Fig. 2. The test current of the battery pack
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Fig. 3. The terminal voltage and VOC of the battery pack

4. BATTERY PARAMETERS ESTIMATION AND ITS
APPLICATION TO BATTERY POWER
PREDICTION WITH VOLTAGE LIMIT

In order to evaluate the performance of the EKF algorithm
on battery state estimation and failure detection, the EKF
algorithm is applied to both experiment pack-level and
vehicle cell-level. The battery capacity is 158 Ah (55 kWh).

4.1 Pack-level Estimation

The battery test operation includes a running cycle lasting
approximately 2.5 hours. The operating current and the
terminal voltage are shown in Fig. 2 and Fig. 3. The
current data, as the input, has rich excitation for the
EKF estimation. The terminal voltage data is used as the
system output measurement. During the test, the battery
was discharged from about 72% to 25% SOC and the
temperature dropped from 29◦ to 21◦C. The referenced
Voc value is demonstrated in Fig. 3 as well. The purpose of
EKF is to estimate the Voc value and the internal circuit
model parameters of resistors and capacitors. From pre-
vious descriptions, the calibration parameters, the scaling
and parameter boundary limits, must be defined correctly,
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Fig. 4. EKF estimation of open-circuit voltage
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Fig. 5. EKF estimation on charge-transfer voltage
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Fig. 6. Estimation on diffusion voltage

as they guarantee EKF estimation stability and keep the
model parameter values from diverging.

With the defined initial parameter values, the scaling
values, the input current I(k), and the terminal voltage
VT (k), the EKF estimates the open-circuit voltage as
displayed in Fig. 4. The estimation result is very close to
the reference Voc result from the BMS algorithm in BOLT
vehicle integration control module (VICM). From Fig. 5,
the fast charge-transfer voltage estimate Vct1 is close to
the reference data (Vct1 and Vct2 Data are generated by
standard production software VICM). From Fig. 6, the
slow charge-transfer voltage Vct2 estimate deviates from
the reference data with some error, since our calibration of
process and measurement noise covaraiances in the models
are different from production calibrations.

The Kalman filter gain converges to zero, that means the
model-based estimate is accurate and the estimation does
not update much from measurements for larger correction.
The estimation covariance also converges and has no
further significant updates during the iteration process.
These results demonstrate the performance of EKF for
pack-level estimation.

4.2 Cell-level Estimation

The estimate of battery status at cell-level can provide
valuable information for BMS in terms of battery safety
protection, power prediction and prognosis in health. One
application of monitoring cell status is to prevent over-
charging/discharging to protect a weak or malfunctioning
cell before it is serviced.

As one example, test conditions are shown from Fig. 7
to Fig. 10. The battery is under driving condition before
3500s and in charging condition between 4500s to 12000s,
see Fig. 7. The state of charge was reduced from 82% to
68% during the driving cycle and then was charged to
92% at the end of test. As shown in Fig. 8, one cell has
lower terminal voltage, Vt Cell2 than other healthy cells,
e.g. cell3 in the pack. The EKF estimation results for both
a nominal and a malfunction cells are listed in Fig. 9
to Fig. 10. The estimated open-circuit voltages indicate
that one cell is in normal condition (orange color curve in
Fig. 9, which is close to the healthy reference cell3 Voc in
blue color) and another one is in abnormal condition (red
curve). The abnormal cell (which lost 22% capacity and
internal resistance slightly increased) is operated under
low SOC status, the energy drains quickly as its terminal
voltage drops below the cell voltage limit, i.e. less than
2.7 volt demonstrated in Fig. 8. From Fig. 10, the ohmic
resistance of the abnormal cell increased slightly from the
normal cell condition. The charge-transfer resistance and
diffusion capacitance do not have significant difference.

4.3 Pack Power Estimation

As demonstrated in Fig. 11, when a battery pack is not
balanced, the battery power and discharge current are
limited by the weakest cell. For a given minimum cell
voltage limit, defined by a battery manufacturer, this
voltage-limited current and power can be calculated as

I(k) = f(VL), P (k) = VL · I(k) (12)

where f(VL) is the calculated voltage-limited current from
any battery model f(∗). As an example, the voltage limited
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Fig. 7. The current of battery under operation
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Fig. 8. The terminal voltages and open-circuit voltage of
operating battery
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Fig. 9. The comparison between open-circuit voltages of a
normal and an abnormal cell
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Fig. 10. The estimates of ohmic resistance of normal cell
and abnormal cell

current can be calculated from battery equivalent circuit
model based on the estimated cell parameters:

I(k) =
VL − V VL

OC − V VL
1 − V VL

2 − V VL

h

Rohmic +Rct1(1− E1) +Rct2(1− E2)
(13)

where, the E1,2 are the exponential decay coefficients of
charge transfer and diffusion; the superscript (∗)VL repre-
sents the projected voltages when the battery is operated
at the voltage limit. With the cell-level estimation results
on this case study and an exemplar voltage limit VL =
2.7(V) for discharging, the estimated limited discharging
current is shown in Fig. 12. It can be clearly seen that the
actual vehicle load current reached or exceeded the bound-
ary of the allowed current limit, which means the weak
cell voltage already hits the threshold limit and has the
potential to be damaged if more load were applied. Fig. 11
shows the battery power estimation flow chart. Applying
the estimated new load current limit from the droop cell
model to the battery pack level model, we can calculate
the allowed pack terminal voltage, thus the allowed pack
power, which is estimated and shown in Fig. 13. In case
there are modeling errors, the estimated available current
limit is not precisely estimated, a feedback loop is added
to fine tune the torque applied to electric drive-train, such
that the terminal voltage of the droop cell will be precisely
controlled above the cell voltage limit. This develops a
valuable method for the battery management system in
vehicle power control while protecting a degraded battery
cell from further damaging that in the worst case could
leads to potential thermal runaway.

5. CONCLUSIONS

This paper demonstrates the benefits of predicting battery
pack level power by using the extended Kalman filter
to estimate battery states. The study showed the EKF
can identify weak cell parameters in real time, allowing
a battery management system to adjust charge/discharge
limits accordingly in order to improve battery safety,
performance and life expectancy.
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Fig. 12. The limited currents for a specified voltage limit
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Fig. 13. The limited powers for a specified voltage limit
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