
Co-simulation of the Unreal Engine and
MATLAB/Simulink for Automated Grain

Offloading

Chufan Jiang ∗ Shveta Dhamankar ∗ Ziping Liu ∗

Gautham Vinod ∗ Gregory Shaver ∗ John Evans ∗

Corwin Puryk ∗∗ Eric Anderson ∗∗ Daniel DeLaurentis ∗

∗ Purdue University, West Lafayette, IN 47907 USA (e-mail:
jiang420@purdue.edu).

∗∗ Deere & Company, Moline, IL 61265 USA

Abstract: This paper presents a generic simulation platform with two widely employed
software, Simulink and Unreal, to simultaneously simulate the perception in virtual 3D scenarios
and system dynamics of automated systems. The proposed CoSim framework improves the
accuracy and reduces the development time of automation systems for agricultural crop
harvesting and transfer. Strategies using either cameras or LiDAR are supported by the
framework. To demonstrate the capability of the proposed CoSim tool, this paper simulates
an automated offloading process conducted by a combine-tractor system with a closed-loop
controller and a LiDAR-based perception system. The simulation results show that CoSim can
be used for both system design and system evaluation.

Keywords: Perception, simulation, driver assistance system, closed-loop control.

1. INTRODUCTION

An automated system usually has three key components:
A perception system to observe the system states, a con-
troller to regulate the system behavior, and the actuators
to perform the control operations. For sophisticated au-
tomation tasks, an intelligent perception system is often
desired to enable the extraction of contextual informa-
tion to help coordinate system components. Simulation
is a crucial step in the development and validation of
the automated system. Given the key components of the
automated system, a model to simulate both the controlled
system dynamics and the perception system response
would be beneficial to develop and validate the automated
system.

However, it is challenging to simulate a perception-based
autonomous system working in a dynamically changing en-
vironment. The system usually includes multiple objects,
a multi-sensor perception system, and a control system. At
the same time, it dynamically interfaces with the external
environment by perceiving and changing the environment.
Therefore, it is crucial to simulate how the perception
module and control module impact each other, and how
the whole system interacts with the environment through
sensors and actuators.

Some simulation platforms designed for autonomous ve-
hicle and robotics applications have proven successful.
Gazebo Koenig and Howard (2004) is an open-source
simulation platform that has been widely used in robotic
research. It uses a modular design that supports different
physics engines, robotics models, virtual sensors, and 3D
world creation. Although Gazebo provides rich features

and good compatibility, the features in its rendering engine
are not as rich as Unreal or Unity, which makes it chal-
lenging to create a close-to-realistic visual environment.
USARSim Carpin et al. (2007) is a high-fidelity robot
simulator based on the Unreal Tournament game engine.
USARSim provides built-in disaster environments, com-
mercial and experimental robot models, and sensor models
including camera and range finder. AirSim Shah et al.
(2018) is an open-source, cross-platform simulator devel-
oped for drones and cars. The simulator builds on Unreal
and provides comprehensive models for autonomous vehi-
cle systems including vehicle model, environment model,
physics engine, sensor model, and visual rendering. Flight
control hardware with a decision-making engine can inter-
act with the simulator to achieve real-time hardware-in-
the-loop simulation.

All these platforms focused on specific automated objects
(on-road vehicles or robots), and they simulated system
dynamics in their own environment with a set of pre-
defined models, which makes them less extendable to other
applications, such as automated grain offloading that this
paper targets at.

Therefore, more generic software is considered in this work
to build a co-simulation platform that can be applied to
different autonomous applications. MATLAB/Simulink is
widely used by users in both the research and industry
community. It provides various toolboxes to model com-
plex mechanical systems, design sophisticated controllers,
develop and implement advanced algorithms, as well as
interface with other software and firmware for data trans-
mission. The Unreal Engine is one of the most advanced
creation tools for the gaming industry. It is open access and

Preprints, 10th IFAC International Symposium on
Advances in Automotive Control
Columbus, Ohio, USA, August 28-30, 2022

© 2022 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

379

has been used to visualize a broad range of applications
such as autonomous driving simulation, surgery simula-
tion, maritime simulation, robotic simulation Resch et al.
(2018); Leudet et al. (2019). Incorporating such popular
and well-developed software enables users to transfer ex-
isting models to the CoSim platform more easily and to
customize the project based on specific applications.

This paper proposes to a simulation platform with two
widely employed software, Simulink and Unreal, so it
can be suitable for various applications. The effort de-
scribed in this paper is the first one the authors are aware
of that demonstrated same-time co-simulation between
MATLAB/Simulink and Unreal for automated systems.
The proposed CoSim framework includes a virtual 3D
world in Unreal and simulates system models and dynam-
ics in MATLAB/Simulink. The feasibility of the CoSim
tool is illustrated by an application on crop harvester
grain offloading automation. This CoSim scheme can be
transferred to other applications given the versatility of
the software packages used.

2. METHODOLOGY

2.1 Automatic offloading project

The automatic offloading of grain from combine harvester
to tractor driven grain cart is a motivating example to
show how to use the proposed of the CoSim capability
developed. The main purpose of automatic offloading is to
automate grain unloading from a combine harvester to a
tractor-driven grain cart while the combine is still moving
and harvesting grain (e.g., corn, soybeans, or wheat). A
perception system is used to monitor grain fill status and
the grain flow impact location. Both cameras and LiDAR
can be simulated in the CoSim and data processing algo-
rithms based on LiDAR sensor are developed to extract the
key perception information for the controller. The control
system determines the designed auger location based on
fill strategy and perceived grain profile, and controls the
vehicle location and auger status to achieve the desired fill
level without grain spillage from the grain cart.

2.2 Simulation architecture

Fig. 1. Framework of co-simulation platform

As shown in Fig. 1, the co-simulation for perception in
the loop automation architecture includes three major
model modules. First, the system model simulates the
behavior of the automatic offloading controller and the
motion dynamics of the combine harvester and a tractor-
driven grain cart, as well as the grain piling dynamics

inside the cart. Second, the scenario visualization model
creates a photorealistic virtual unloading environment in
response to the system model status, including the position
of the vehicles, grain fill level, and the placement of the
perception sensor(s). Third, the perception system then
models the 3D LiDAR sensor using scenario visualization
data and runs a data processing algorithm synchronously
to extract useful perception information for unloading
status monitoring (e.g., cart corner location, perceived
grain height map). The output from the Perception System
Module is then sent back to the controller in the System
Model Module, so the controller can estimate the current
unloading progress and how full the cart is, then send
commands to vehicles to reach a certain fill target while
avoiding spillage.

The color code in the architecture diagram labels the
development environment for each module. The blue box
in Fig. 1 is developed and run in Simulink, the green box
is developed and run in Unreal and the orange blocks are
developed and run in MATLAB.

2.3 System Model Module

Fig. 2. System model architecture

The blue blocks in Fig. 2 depict the components in the
system model and its relation to the visualization model
and perception system shown in the green block. The
system model can be divided into two parts: the automatic
offloading controller and the vehicle models.

During automatic offloading, the operator sets a target
fill level with the desired fill strategy. Based on the user
input, pre-known parameters (e.g., vehicle geometry), and
feedback from the vehicles and the perception system,
the automatic offloading controller calculates the control
efforts: auger on/off command and vehicle location com-
mand. Machine Sync, a commercially available technology
by John Deere is used to control the relative position
between the two vehicles. The vehicle models simulate how
tractor and combine dynamics are affected through use
of Machine Sync. On top of that,the modeled auger flow
rate and the vehicle relative location are used together
with the known cart geometry to run a grain fill model
which simulates how the grain profile progresses inside
the grain cart. Finally, the grain profile and other system
status are sent to Unreal for visualization. The grain profile
is monitored by the perception system and sent back to
the automatic offloading controller, closing the automatic
offloading control loop.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

380

2.4 Scenario Visualization Model Module

The main purpose of the scenario visualization model is
to create a 3D world that is consistent with the system
status simulated by the system model, and then generate
synthesized camera images from the current scenario. It
also generates depth encoded images that will be later used
to simulate LiDAR data.

The 3D virtual scenario is defined by vehicle status, grain
property, environment lighting conditions and camera con-
figuration. The vehicles CAD models are loaded into Un-
real to achieve a truthful representation of vehicle geome-
tries as shown in Fig. 3a. The vehicle dynamics from the
system model is used to dictate the vehicle movement in
3D visualization. A grain flow element is added in the 3D
scenario using the Unreal particle emitter, and a 2D grain
fill map simulated by the grain fill model is converted
to a 3D grain mesh to reflect the grain profile change
during unloading. The built-in camera model in Unreal
is used to simulate 2D camera images with customizable
configurations including placement and camera parame-
ters including the field of view, aspect ratio and projection
mode. Figure 3b shows an example of a camera sensor
capturing an unloading process with grain flow and grain
bed visualization.

(a) (b)

Fig. 3. Example elements in scenario visualization model:
(a) combine and tractor models; (b) camera image
from an unloading process.

2.5 Perception System Module

In the perception system module, the authors built a
LiDAR sensor model based on the Unreal camera model.
The simulated sensor data is then sent to data processing
algorithms to extract useful context information.

LiDAR sensor model The proposed LiDAR sensor model
is developed in three steps. First, the depth information
was encoded together with the camera RGB image. Sec-
ond, the 3D coordinate for each camera pixel was then
subsequently retrieved from the depth image. Third, since
the LiDAR sensor and camera sensor sample the world
in different patterns, a data resampling was required to
generate point cloud data following the LiDAR pattern.
The first step was coded in the Unreal with its visual
scripting system, and the following steps were programmed
in MATLAB/Simulink function blocks.

Step1: Render camera image with depth informa-
tion (in Unreal). A LiDAR sensor provides a 3D mea-
surement of the environment geometry. However, the vir-
tual camera in Unreal only provides a 2D RGB image, and
does not directly provide depth information for the camera
sensor. To simulate a 3D LiDAR sensor, 3D information
from the sensor point of view is required, and therefore

(a) depth encoded images (b) LiDAR data resampling

(c) simulated LiDAR point
cloud

Fig. 4. LiDAR data simulation

must be calculated. Although Unreal does not directly
provide a 3D sensor model, it allows users to retrieve the
depth information for each pixel in the rendered image.
The authors developed a pixel shader to encode the depth
information of each pixel into color values (as shown in
Fig. 4a).

In Unreal the depth information is a float number and the
color image is stored by an 8-bit integer for each R, G, B
channel. To encode the depth value into color image with
a broad range and high precision, the following equations
are used for depth encoding:

R(u, v) = G(u, v) = round(min((
d(u, v)

α
)γ , 1)× 255) (1)

B(u, v) = round((
d(u, v) mod β

β
)γ × 255) (2)

where R(u, v), G(u, v), B(u, v) are red, green and blue
channel of pixel (u, v) on the depth encoded color image.
Each channel is stored by an 8-bit integer so the value is
within [0, 255]. d(u, v) is the depth value to be encoded
with the unit of cm, α and β are constant scaling factors
with α > β. α should be larger than the maximum
value of d to avoid data truncation. The mod is the
modulo function and round is the rounding function.
Unreal internally applies an inverse gamma correction on
texture color for better visualization. Therefore, a gamma
function was added in the depth encoding with the gamma
correction constant γ = 2.2.

Step2: Retrieve 3D coordinate from depth image
(in Simulink). After generating the depth encoded im-
age, the 3D coordinate for each pixel (u, v) on the image
can be retrieved. Since the depth value is encoded into
R, G, B channels of a color image, the decoding can be
achieved in an inverse manner using Eq. 3

d′(u, v) =

[
round(

R(u, v)

255
× α

β
− B(u, v)

255
) +

B(u, v)

255

]
× β,

(3)

where d′(u, v) is the decoded depth value at pixel (u, v).
The depth d′(u, v) is the Z coordinate on camera sensor
coordinate. To retrieve 3D information from a 2D depth
image, the camera model used in Unreal needs to be
investigated.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

381

(a)
(b)

Fig. 5. Sensor models: (a) the pinhole camera model; (b)
the LiDAR model built upon the camera model.

Unreal uses a basic pinhole model Hartley and Zisserman
(2003) as shown in Fig. 5a to simulate how the camera
sensor captures an image of the 3D world. Oc is the camera
center and XcY cZc is the camera 3D coordinate. The
image plane is perpendicular to the Zc axis with a constant
distance f called focal length and Zc passes through
the center of the image plane. A 3D point P (X,Y, Z)
is mapped to a 2D point Pc(u, v) on the camera image
where Pc(u, v) is the intersection between the line OcP
and the image plane. Equation 4 describes the mapping
relationship from a 3D point to a 2D image pixel

−−−→
OCP = (āu+ b̄v + c̄)W (4)

Since P = [X,Y, Z]
T

and OC = [0, 0, 0]
T
, Eq. 4 can also

be written as [
X
Y
Z

]
=

[
ā b̄ c̄

] [u
v
1

]
W. (5)

Here ā and b̄ are unit vectors of two axes of the image

plane with ā = [1, 0, 0]
T
and b̄ = [0,−1, 0]

T
. c̄ is the vector

from camera center to the origin of the image plane. For
a camera sensor with w × h resolution and hfov degrees

horizontal field of view, c̄ =
[
−w

2 ,
h
2 ,

w
2 tan(hfov/2)

]T
. W

is the augmented dimension in homogeneous coordinate
that is used for simplifying the calculation. In Eq. 5, the
coordinate of each camera pixel (u, v) is known, and the
decoded depth d′(u, v) from Eq. 3 is the Z coordinate of
P . Therefore, there are three unknowns X,Y,W and three
equations in Eq. 5, the 3D coordinate P (X,Y, Z) can be
solved for each pixel Pc(u, v) of the depth image.

Step3: Resample camera image based on LiDAR
patterns (in Simulink).

Camera and the LiDAR sensors sample the world in
different ways. The camera pixels on the image plane
distribute evenly in horizontal and vertical directions.
While the LiDAR sensor samples the world evenly in angle
instead of in distance. After getting the depth encoded
image from Step 1, the image is resampled based on
LiDAR’s scanning patterns. As illustrated by Fig. 5b, the
LiDAR sensor scans the world with evenly spaced angles
and thus its point cloud data is typically represented
by spherical coordinates with a distance R, an azimuth
angle θ, and a polar angle ϕ. The goal is to derive the
LiDAR model from the camera model and thus LiDAR
coordinate X lY lZl is aligned with the camera coordinate.
Then the image point Qc(r, θ, ϕ) corresponding to Q can
be determined on the image plane. Since Qc and Q lie

(a) Grain cart picture from the
sensor view (b) Cart boundary detection

(c) Grain height map (d) Grain flow impact location

Fig. 6. Data processing algorithms for automatic offloading

on the same LiDAR ray, they share the same angles θ
and ϕ. However, Qc has to be on the image plane and it
has a different distance from Q. Consider the fact that
the camera image plane is perpendicular to Z-axis with
a constant distance of focal length, the distance r can be
computed based on the focal length and two angles:

r = f/ sin(θ)/ sin(ϕ). (6)

Here f = w
2 tan(hfov/2) , θ is integer times of LiDAR vertical

resolution and ϕ is integer times of horizontal resolution.
Now the spherical coordinate of Qc can be converted into
the camera image pixel

(
ul, vl

)
by Eq. 7.

ul = round(r sin(θ) sin(ϕ) + w/2)
vl = round(r cos(θ) + h/2)

(7)

Through Eqs. 6 and 7, each LiDAR sample point is
mapped onto one camera pixel

(
ul, vl

)
and then extract

the 3D coordinate of this pixel from depth image using
Eq. 5 in Step 2. Typically the LiDAR sensor has a larger
horizontal field of view than what a camera sensor has.
Therefore, two camera models with the same location but
different viewing angles are stitched together to simulate
one LiDAR sensor with an ultra-wide field of view.

Data processing algorithm To achieve closed-loop simu-
lation with perception in the loop, the perception system
needs to perceive the contextual information from simu-
lated sensor data and send it to a controller for decision
making. Therefore, data processing algorithms are imple-
mented in the Perception System Module.

For the automatic offloading project, the perception sys-
tem should provide three key pieces of information to the
controller: the location of the grain cart boundary, the
grain height estimation of the current grain pile in the
cart, and the impact location within the cart. Figure 6a is
a picture of the perceived grain cart from the sensor view.
Figure 6b is an example of cart boundary detection results
on simulated LiDAR data where the black dots labels the
detected boundary data. With the cart boundary location,
the grain pile profile is discretized into a 2D height map
in Fig. 6c. Each grid from the map represents the grain
height relative to the cart boundary. The gray-scale color
code reflects the height value and black grids are invalid

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

382

measurement. Besides, the perception system also detects
grain flow impact location which is the contacting point
between grain flow and the grain bed, ash shown by the
blue dot in Fig. 6d.

Note that the data processing algorithms described above
can be replaced by any other customized algorithms, and
users can always take advantage of the powerful MATLAB
toolboxes for more advanced algorithm development.

2.6 Data transmission interface

As shown in Fig. 1, simulation data are transmitted across
Unreal and MATLAB/Simulink to achieve communication
between different modules of the CoSim framework. There
are three types of data exchanged between Unreal and
MATLAB/Simulink: floating-point number and camera
data.

The bi-directional numeric data exchange is facilitated by
a shared memory interface developed by MathWorks Ja-
yaraman et al. (2017). In Unreal, the interface provides
a plugin to enable necessary read/write functions, and in
MATLAB it includes a block for reading and writing data
from the same shared memory locations specified in Unreal
Engine, MATLAB, and Simulink.

For camera data transmission, Mathworks provides an
interface plug-in in Vehicle Dynamics Blockset MathWorks
(2020) to enable configuration of Unreal virtual camera
from MATLAB/Simulink, including loaction, orientation,
and specifications of the camera. To establish image trans-
mission in Unreal, a Sim3dSceneCap actor with a unique
tag name is added to the virtual scene.

3. SIMULATION RESULTS

3.1 Offloading simulation example

The developed CoSim framework was used to simulate
an automatic offloading process with the LiDAR-based
perception feedback and closed-loop control.

The automatic offloading system includes a combine
harvester (model: John Deere S660), tractor (model:
John Deere 8345R IVT), and grain cart (model: Brandt
1020XR). The perception system is configured assuming a
LiDAR sensor (model: Waymo Honeycomb) with data pro-
cessing algorithms developed by the authors. The unload-
ing is on flat terrain and the vehicles are moving in straight
lines. The unloading was finished in one continuous load.
Visualization 1 shows this process. The simulation in the
video runs a Front-to-Back control strategy to fill up the
grain cart from a half-full status to the desired fill level.

Figure 7 shows multiple windows that pop-out during
CoSim and each of them represents the simulation result
from different parts of the closed-loop system. The top
left figure shows the combine-tractor relative position from
vehicle position control. The top right figure is a 2D scheme
of how the grain profile looks like. This system status
is sent into the Scenario Visualization Module to allow
updates to the 3D automatic offloading environment. The
Unreal window on the right shows an example of the
relative position between the combine auger and grain cart
in a top-down view. The perception system in the orange

Fig. 7. Simulation result windows in CoSim platform

(a) Ground truth grain fill map
from the grain fill model

(b) Grain height map generated
by perception system

Fig. 8. Comparison between the perceived grain fill map
and ground truth

box inputs 3D sensor data from the Unreal environment
and feeds the data into the perception algorithm. The
example perception result is shown in the bottom left
with an impact location on top of a 2D grain fill map.
Based on this grain fill map, the controller inside System
Model Module (blue box) estimates the fullness status
for each grain cart section as shown on the left fullness
status plot where 1 means full and 0 means not full. The
fullness status drives decision making inside the automatic
offloading controller. Once the current unloading section
is full, the controller will command the auger to the new
unloading position. In this CoSim simulation framework,
each part of the co-sim block is interacting with others as
a loop and they progress in a complex dynamic to generate
final unloading results. Visualization 1 is an example of the
CoSim demonstrating that in the simulation environment
the designed automation system achieves unloading the
grain from combine to grain cart successfully.

3.2 Automatic offloading evaluation

The unloading results with perception model feedback
and ground truth feedback were compared to quantify the
influence of the perception model error. Figure 8 shows the
grain fill map from ground truth information generated
by the grain fill model and the perception system. Each
grid has a gray-scale color representing the averaged grain
height within it and the grid without a valid measurement
is colored as purely black. The grain fill model provides
the ground truth of grain fill level because it defines
the visualization scenario from which the sensing data is
generated. As shown in Fig. 8b, the grain map from the
perception system is incomplete and noisy. The CoSim can
be used as a tool to quantify the impact of perception
system error.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

383

(a) Use ground truth as grain fill level feedback for controller

(b) Use perception system result as grain fill level feedback for
controller

Fig. 9. Vehicle relative location plots

(a) (b)

Fig. 10. Grain fill status plots: (a)Use ground truth as grain
fill level feedback for controller; (b) Use perception
system result as grain fill level feedback for controller.

As an example, Fig. 9 compares the combine auger location
relative to the grain cart during an automatic offloading
process with ground-truth feedback (Fig. 9a) and percep-
tion system feedback(Fig. 9b). The black dash line is the
desired auger location based on the cart fullness feedback.
The grain cart is divided into 9 sections in the longitudinal
direction. Once the current unloading section is full, the
desired auger location moves to the next one. The red solid
line is the control effort calculated by the controller and
the black line is the actuating signal with multiple nudge
command. The blue line shows the actual auger location.
In the perception system feedback result shown in Fig. 9b,
due to the incomplete and noisy perception results, the
controller cannot always get an accurate and up-to-date
measurement on the grain profile. As a result, the desired
location from the controller changes less smoothly. For ex-
ample, the auger location changes more frequently around
60 sec and stay longer on the current section between 60 -
80 sec.

This is also reflected on the final grain profile after un-
loading finishes. Figure 10 shows a cross-section view of
the final unloading profile in the longitudinal direction.

The blue line is the grain profile, the black line indicates
the height level of the cart boundary, and the red dash
line marks the target fill level.It is desirable to have a final
profile that is in between the red and the black line. With
the ideal feedback of grain fill status each grain peak is
right on the target fill level (Fig. 10a). On the contrary, the
unloading process with the imperfect perception results
generates a grain pile that is not uniform and exceeds the
target level shown with the red dashed line (Fig. 10b).

4. SUMMARY

This paper presents a co-simulation (CoSim) framework
with Unreal and MATLAB/Simulink and its use case to
simulate automation systems with perception feedback.
The developed framework can simulate both the system
dynamics in Simulink and perception system dynamics in
Unreal synchronously. Simulation results on an automatic
offloading system demonstrates that the presented CoSim
can be used to develop and validate an automated system
and provides tools for system evaluation and optimization.

5. ACKNOWLEDGMENTS

The authors would like to acknowledge Deere and Com-
pany for providing financial and technical support for the
project. We would also like to thank MathWorks for the
software support.

REFERENCES

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and
Scrapper, C. (2007). Usarsim: a robot simulator for
research and education. In Proceedings 2007 IEEE
International Conference on Robotics and Automation,
1400–1405. IEEE.

Hartley, R. and Zisserman, A. (2003). Multiple view
geometry in computer vision. Cambridge University
Press.

Jayaraman, A., Micks, A., and Gross, E. (2017). Creating
3d virtual driving environments for simulation-aided
development of autonomous driving and active safety.
Technical report, SAE Technical Paper.

Koenig, N. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot sim-
ulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, 2149–2154. IEEE.

Leudet, J., Christophe, F., Mikkonen, T., and Männistö,
T. (2019). Ailivesim: An extensible virtual environment
for training autonomous vehicles. In 2019 IEEE 43rd
Annual Computer Software and Applications Confer-
ence (COMPSAC), volume 1, 479–488. IEEE.

MathWorks (2020). Vehicle dynamics blockset. https://
www.mathworks.com/products/vehicle-dynamics.
html. Accessed: 2020-12-15.

Resch, J., Ehrentraut, J., Barnett-Cowan, M., et al.
(2018). Gamified automation in immersive media for ed-
ucation and research. arXiv preprint arXiv:1901.00729.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018).
Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and Service Robotics,
621–635. Springer.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

384

