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Abstract: Data-driven fault diagnosis of dynamic systems is complicated by incomplete training
data, unknown faults, and overlapping classes. Many existing machine learning models and
data-driven classifiers are not expected to perform well if training data is not representative
of all relevant fault realizations. In this work, a data-driven model, called a flexi-pipe model, is
proposed to capture the variability of data in residual space from a few realizations of each fault
class. A diagnosis system is developed as an open set classification algorithm that can handle
both incomplete training data and overlapping fault classes. Data from different fault scenarios
in an engine test bench is used to evaluate the performance of the proposed methods. Results
show that the proposed fault class models generalize to new fault realizations when training
data only contains a few realizations of each fault class.

Keywords: AI/ML application to automotive and transportation systems, Model-based
diagnostics, Open set classification, Engine fault diagnosis.

1. INTRODUCTION

Fault diagnosis of dynamic systems considers the problem
of detecting abnormal system behavior at an early stage
and identify its root cause. A common approach is to
use residual generators to detect inconsistencies between
sensor data and model predictions. Dynamic systems can
have a wide operating range, including different operating
conditions and transient behavior. Predictive models can
be used to compute residuals that filter out the system
dynamics while still being sensitive to faults. An advantage
of using residuals as features is that fault-free data are dis-
tributed around the origin while data from different fault
classes are projected into different manifolds of residual
space. If the predictive model is derived from physical in-
sights this is often referred to as model-based diagnosis and
if a black-box model is trained using previously collected
operational data, it is referred to as data-driven diagnosis.

An advantage of model-based diagnosis is that it is possible
to isolate unknown faults by using model analysis (Jung
et al., 2018). However, deriving high fidelity models from
physical insights for fault diagnosis applications is a time-
consuming process. Data-driven models are attractive be-
cause they can learn complex information from data. A
complicating factor of data-driven fault diagnosis is that
faults are rare events. This means that available training
data from faults is often imbalanced and not representative
of all relevant realizations of each fault class, especially
during early system life before any fault has occurred
(Jung et al., 2018; Sankavaram et al., 2015). One solution
is to train data-driven residual generators from fault-free
data as features for fault detection and fault classification.

Machine learning and data-driven classification algorithms
rely on representative training data to determine decision
boundaries to distinguish between different classes. Classi-
fication models try to map different sets of feature outputs
to class labels that best can explain the outputs. Selecting
a suitable model to capture the relevant properties of fea-
ture data in a specific application is a non-trivial problem.
Many data-driven classifiers do not generalize well which
results in unreliable predictions when new feature outputs
significantly deviate from training data. One solution is to
use open set classification algorithms that model the data
support of classes available in training data (Jung et al.,
2018; Scheirer et al., 2013). However, using only the data
support to model fault classes will result in many fault
scenarios are identified as unknown faults if training data
only consists of a few realizations of each fault class. Iden-
tifying which models are appropriate for a given problem
is important to increase model interpretability and avoid
misclassifications.

Another complicating factor of fault diagnosis is class
overlapping, i.e., that different fault classes can result in
similar residual outputs. This happens, e.g., in early stages
of system degradation when it is difficult to distinguish
small faults from nominal system behavior. An example is
shown in Fig. 1 where residual data from an engine test
bench is plotted against each other. Each color represents
one fault class and data have been collected from different
fault magnitudes. Fault-free data (No Fault - NF) and
data from different fault classes with small magnitudes
are located close to the origin illustrating the overlapping
of different classes. Multi-class classification algorithms
that only identifies the most likely class that can explain
data, e.g., Random Forests, could result in unnecessary

Preprints, 10th IFAC International Symposium on
Advances in Automotive Control
Columbus, Ohio, USA, August 28-30, 2022

© 2022 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

84



misclassifications. One approach is to model data from
each class separately and identify which data classes that
can explain the residual outputs (Jung et al., 2018).
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Fig. 1. Residual data collected from the engine test bench
(Jung, 2020).

To handle the complicating factors of data-driven fault
diagnosis, there are several works investigating the bene-
fits of combining model-based and data-driven methods.
A general approach to diagnose dynamic systems is to
use sensor data to compute residuals to filter out system
dynamics. The residual outputs can then be used as input
to a data-driven classifier (Jung et al., 2018). In Slimani
et al. (2018), a Bayesian fusion strategy for hybrid fault
diagnosis is proposed when combining model-based and
data-driven techniques. A hybrid diagnosis system design
is developed in Luo et al. (2009) for an ABS system com-
bining support vector machines and model-based residu-
als. In Khorasgani and Biswas (2018), a hybrid diagnosis
system design is proposed for monitoring of smart build-
ings where model-based residuals are developed based on
available system models combined with additional data-
driven anomaly classifiers for non-modeled parts of the
system. With respect to previous work, this paper focuses
on the development of a data-driven model to capture the
variability of residual data from different fault classes that
can be used for open set classification.

2. PROBLEM STATEMENT

The main contribution in this work is to develop a data-
driven model for fault class modeling using residual data.
The purpose is to handle the complicating properties of
data-driven fault diagnosis of dynamic systems that are
summarized in the following bullets:

• Imbalanced data (Sankavaram et al., 2015)
• Unknown fault classes (Scheirer et al., 2013)
• Class overlapping (Lundgren and Jung, 2022)

The purpose of the proposed data-driven model is to
improve classification accuracy when training data from
faults are limited and only consists of a few realizations
from each fault class. An advantage of the proposed model
is that it takes into consideration variations in residual
data that depend on different realizations of each fault
class, referred to as the fault signature. Residual data has
been collected from different fault scenarios on an engine

test bench (Jung, 2020) to evaluate the proposed method,
see Fig. 1.

3. BACKGROUND

Before describing the proposed data-driven fault model,
the principles of model-based fault diagnosis using residu-
als are discussed. Then, a summary of two machine learn-
ing methods, Principal Component Analysis and Gaussian
Processes, that will be used to formulate the proposed fault
class model is given.

3.1 Residual-based fault classification

Residual-based fault detection and isolation is one of the
main approaches in model-based diagnosis. Residual out-
puts r are used to diagnose faults by detecting inconsisten-
cies between sensor data y and model predictions ŷ. This
is illustrated in Fig. 2 where f denotes faults affecting the
system and u denotes the control signals.

Model
˙̂x = g(x̂, u)

ŷ = h(x̂, u)

+

f(t)

u(t)

y(t)

ŷ(t)

r(t)

−

Fig. 2. A residual r(t) compares measurements from the
system y(t) with model predictions ŷ(t).

When faults occur in different parts of the system, they
will have various impact on the overall system behavior.
Fault classification is performed by analyzing the residual
patterns, for example using consistency-based methods,
see, e.g., Pulido and González (2004), to identify a set
of fault hypotheses. In practice, it is likely that both the
residual mean, and covariance will vary, and not only as
a function of fault size but also with varying operating
conditions of the system and modeling errors.

3.2 Modeling data variability using PCA

To model the manifold in residual space that describes
the distribution of residual data for a given fault class,
it is assumed here that the main variability of residual
data can be described by a linear subspace, similar to the
fault signature for linear systems. Principal Component
Analysis (PCA) is the process of finding an ordered set of
orthonormal vectors, denoted principal components, along
which a given set of data points are linearly uncorrelated.
The principal components are ordered such that the first
component represents the largest eigenvector of the data’s
covariance matrix, the second component represents the
second largest eigenvector, and so on. Thus, PCA can be
used to perform a change of basis and is a popular tool
for dimension reduction by only keeping the dominant
principal components (Hastie et al., 2009).
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3.3 Gaussian Processes

Gaussian Processes (GP) is a non-parametric machine
learning method which models data as a stochastic process
where any finite collection of random variables from that
process has a multivariate normal distribution (Williams
and Rasmussen, 2006). A GP model can be used to model
a spatially correlated function y = g(u) and its behavior is
defined by the mean µ(u) and covariance function k(u, u′).
The GP is denoted as

φ(u) ∼ GP (µ(u), k(u, u′)) (1)

Here, the parameters that are used to describe the distri-
bution of residual data from one fault class are modeled
using GP to capture the uncertainties in the residual model
and sensor noise for different fault realizations.

4. DATA-DRIVEN MODELING OF FAULT CLASSES
USING FAULT SIGNATURES

In this section, a data-driven model of fault classes is
proposed based on the idea that the variability of residual
data from one fault class can be described by a manifold.
Here, this manifold represents the non-linear version of the
fault signature for the linear cases.

4.1 Modeling fault classes

The distribution of residual data given a specific fault class
depends on the fault magnitude and it is here assumed that
the main variability of data from one fault class can be
represented by a fault signature vector. The distribution
of residual output r̄ is not only conditionally depending on
fault class F but also fault magnitude θF . For small fault
magnitudes, the residual outputs will have a distribution
that is located close to the origin and similar to the
nominal (fault-free) class. Thus, fault-free training data
represents the asymptotic distribution of residual data
when the fault magnitude goes to zero. Therefore, training
data from the fault-free case is included when modeling
data from each fault class.

To model fault class F , PCA is applied to training data
from that class (including fault-free data) to derive a
transition matrix AF based on the principal vectors to
perform a change of basis as

r̄F = AF r̄ (2)

The first principal vector, represented by the first row in
AF denoted AF

1 , is used to model the fault signature.
Then, r̄F‖ = r̄F1 = AF

1 r̄ represents the location of the

residual outputs along the main principal vector. Data
along the remaining principal components is denoted r̄F⊥.

The conditional distribution p(r̄F⊥|r̄F‖ ) is modeled as a

multivariate normal distribution

p(r̄F⊥|r̄F‖ ) ∼ N(µF
⊥(r̄F‖ ),ΣF

⊥(r̄F‖ )) (3)

where the elements of µF
⊥ ∈ Rn−1 and ΣF

⊥ ∈ Rn−1×n−1

are modeled as functions of r̄F‖ . Since there is, in general,

no parametric model of how the distribution of residual
data varies along the principal vector, GP is used as a
non-parametric model of each distribution parameter. To
assure that ΣF

⊥ is invertible and positive definite, a set of
GP models are trained to estimate the parameters of the

Cholesky decomposition ΓF
⊥(r̄F‖ ). If ΓF

⊥(r̄F‖ ) is lower tri-

angular with positive diagonal entries, the multiplication
ΣF
⊥(r̄F‖ ) = ΓF

⊥(r̄F‖ )ΓF
⊥(r̄F‖ )T will be positive definite. For

each fault class model, a set of n− 1 GP models is needed

to model the mean and n(n−1)
2 GP models for the Cholesky

factorization of the covariance matrix.

To illustrate the proposed fault class model (3), a simu-
lation study with residual data from three different fault
classes are used. Figure 3 shows generated data from three
simulated fault classes with varying fault magnitudes. The
samples from a subset of fault realizations, represented
by ’x’ are used as training data while validation data are
shown as opaque ’·’.
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Fig. 3. Simulated residual data from three different fault
classes where ’x’ denotes training samples. An illus-
tration of the flexi-pipe model trained using residual
data from each fault class. The ellipses represent the
modeled data distribution along the fault signature
estimated for each fault class.

A model (3) for each fault class is trained by first applying
PCA to derive a transition matrix AF and then generate
a set of bootstrap samples that are used to estimate dis-
tribution mean and covariance of residual data along the
main principal vector. These estimates are then fed into a
set of GP models to predict the distribution parameters.

The trained fault models are shown in Fig. 3 where the
ellipses represent the modeled covariance along the main
principal component (fault signature). Figure 3 shows
that the proposed model captures the residual behavior,
including varying noise levels and the shape of the fault
signature. In addition, it gives an approximation of the
distribution of fault realizations in between training data.
Because of the visual resemblance, the fault model is
referred to as a flexi-pipe model.

4.2 Training of the flexi-pipe model

Here the process of training the GP models for µ and Γ is
described for the flexi-pipe model using training data from
fault class F (including data from the fault-free class).
First, all training data from that fault class is used to
compute the transition matrix AF which is then used to
represent residual data in that new base. Then, a set of
bootstrap estimates of µ and Γ are generated for different
inputs r̄F‖ . Consider the subset of training samples r̄F⊥ such

that
∣∣∣r̄F‖ − r̄F‖,0∣∣∣ ≤ ε for some value of r̄F‖,0 and ε > 0. If the

number of samples in that interval is sufficiently large, a
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set of bootstrap estimates are computed for different values
of r̄F‖,0. The generated set of bootstrap estimates are used

to train the set of GP models modeling each element in
µ(r̄F‖ ) and Γ(r̄F‖ ), respectively.

5. DATA-DRIVEN FAULT DIAGNOSIS USING
INCOMPLETE DATA

Fault classification is performed in two steps. First, a fault
detection phase is used to monitor residuals to detect
abnormal behavior. When a fault is detected, the fault
isolation phase is activated where the residual outputs
are used to rank different fault hypotheses, including the
hypothesis that an unknown fault has occurred. Here, the
known fault classes are modeled using the flexi-pipe model
to capture the variability of residual data from a limited set
of training data of each fault. The set of fault hypotheses
are ranked based on how well each fault class can explain
the residual outputs.

5.1 Ranking of fault hypotheses using the flexi-pipe model

To rank the different fault hypotheses, a one-class classifier
is implemented based on the flexi-pipe model. A decision
function is formulated using the Mahalanobis distance, see
for example Murphy (2012), where a sample of the residual
outputs r̄ is said to be explained by fault class f if

(r̄F⊥ − µ(r̄F‖ ))T Σ−1(r̄F‖ )(r̄F⊥ − µ(r̄F‖ )) ≤ J2 (4)

where J is a threshold representing how many standard
deviations that a sample is allowed to deviate from the
mean. Since residual data are tested with respect to all
known fault classes, there could be more than one fault
class that can explain the residual output if (4) is true
for multiple fault classes f . When no known fault class
can explain a sample r̄, i.e., (4) is not fulfilled for any
known fault class, the sample is said to belong to an
unknown fault class Jung et al. (2018). This means that
each fault hypothesis representing a known fault class
is ranked between 0% − 100% depending on how many
samples that can be explained by that class. The unknown
fault class is ranked between 0% and one minus the highest
rank for any known fault class.

6. CASE STUDY

The proposed flexi-pipe models and diagnosis system are
evaluated by using experimental data collected from an
engine test bench, see Fig. 4. The engine is a commercial,
turbo charged, four-cylinder, internal combustion engine
from Volvo Cars. The sensor and actuator setup is the
standard commercial configuration for the engine (Jung
et al., 2018).

Several data sets, one for each fault class and magnitude,
has been collected for different fault scenarios where the
engine is operated both stationary and transient modes
by following the Worldwide Harmonized Light Vehicles
Test Procedure (WLTP) driving cycle. Sensor faults are
injected in the engine control unit as multiplicative faults
while leakages are implemented using valves of varying
orifices. A description of the faults is given in Table 1.
Data sets have been collected for realizations of each fault
class with magnitudes between −20% and 20% for sensor

Fig. 4. The engine test bench which was used for data
collection. The engine is a commercial four cylinder
combustion engine with standard sensor and actuator
configuration (Jung, 2020).

faults and leakages with an orifice diameter of 4mm and
6mm, respectively.

Table 1. Fault classes considered in the case
study. All sensor faults are induced as multi-

plicative faults.

Fault Class Description

NF Fault-free class

fypim Fault in intake manifold pressure sensor

fypic Fault in intercooler pressure sensor

fywaf Fault in air-mass flow sensor

fiml Leakage in the intake manifold

6.1 Residual data generation

A set of three residual generators has been implemented
by training a set of recurrent neural networks (RNN)
for regression using fault-free data as described in Jung
(2020). Figure 5 shows an example of the residual r2

evaluated on fault-free data and data from the sensor fault
fypim with a magnitude of 10%. The upper plots show
the output from a sensor measuring the pressure at the
intake manifold and the corresponding model prediction.
The lower plots show the resulting residual outputs. There
is a visible deviation in the residual output between the
nominal and the faulty case.

Figure 6 shows an example of when the flexi-pipe model
has been fit to residual data from different fault classes.
The model captures the variability in residual data for each
fault class and the figure also illustrates how each model
extrapolates beyond training data.

7. EVALUATION

To evaluate the proposed flexi-pipe model, a set of exper-
iments are conducted using the case study to show the
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Fig. 5. Sensor data ypim and model prediction ŷpim from an
RNN regression model used in r2 during nominal and
faulty operation. The lower plots show the resulting
residual outputs.
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Fig. 6. An example of the flexi-pipe model fit to residual
data from different fault classes.

performance with imbalanced training data and unknown
faults. The residual outputs have been normalized to have
a variance equal to one in the fault-free case. Because the
flexi-pipe model is used for modeling fault classes and not
the fault-free class, the focus of the case study will be on
the fault isolation step and the fault size estimation step.

In the evaluation, the training data set only consists of
fault-free data and sensor fault data of magnitude −20%.
The remaining data sets are used as test data. The leakage
datasets will be used to simulate an unknown fault and are
not included in training data.

To compare the results of the flexi-pipe model with other
data-driven classification principles, an open set fault clas-
sification scenario is evaluated, taking into consideration
that there can be unknown fault classes, and a closed
set fault classification scenario, where all fault classes are
represented in training data. In the closed set scenario,
a Random Forest (RF) classifier with 100 trees is evalu-
ated to represent a multi-class classifier. In the open set
scenario, the open set classification algorithm proposed in
Jung et al. (2018) is evaluated where the fault classes are
modeled using a set of one-class support vector machines.

7.1 Closed set fault classification

The first analysis will focus on the closed set case, which
is also referred to as the closed world assumption, where
it is assumed that there are no unknown fault classes. The
two classifiers have been trained on the same dataset. Note
that fault-free data have not been included in the training
set for the RF classifier. Each fault class is ranked in the
different fault scenarios based on how many samples that
can be explained by each fault class. The total ranking of
all classes for both the RF classifiers sum to 100% since
each sample is only classified to one fault class.

The results from the closed set case study are shown in
Fig. 7. The curves show the ranking of each fault class
for different fault scenarios and fault sizes, where the
curve corresponding to the true fault class is highlighted.
The MB classifier gives the true fault a high rank in
all fault scenarios. However, when analyzing faults fypim
and fywaf it is visible that there is a significant overlap
between the different classifiers, especially for small fault
sizes, since all fault classes have a high rank. However,
the performance of RF classifier significantly degrades
for positive fault sizes and is not able to identify fypic
and fypim. The RF classifier performs well when ranking
fault class fywaf , even though the ranking goes down
for positive faults, which is reasonable since the residual
output is not changing significantly for different fault sizes.
Note that the RF classifier cannot handle overlapping
classes which is visible by that fault class fywaf receives a
high rank for small sizes of the other fault classes.
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Fig. 7. Evaluation of closed set fault classification problem.
The plots show the ranking of different fault classes
for the different classifiers as a function of fault size
where the true fault class is marked in each subplot.

7.2 Open set fault classification

In the open set case, the unknown fault class is added as a
fault hypothesis. Here, the MB is implemented where the
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unknown fault hypothesis is included. The RF classifier
cannot be used for open set classification. Instead, a set of
one-class support vector machines (1SVM) are trained for
each fault class. Fault hypotheses are ranked in the same
way as for the MB classifier but where the unknown fault
class is ranked by counting the samples that cannot be
explained by any of the known fault classes. The leakage
fault fiml is introduced as an unknown fault fx.

The results are shown in Fig. 8 where the MB classifier
gives the same ranking of the known fault classes as in the
closed set scenario. The leakage fault fiml receives a low
ranking as an unknown fault. This can be explained by
that the residual outputs from the fault fiml are similar to
fypim and fywaf , see Fig. 1. An interesting observation is
that the 1SVM classifier, which models the training data
support for each fault class degrades for realizations of
fault fypic that deviate from training data which instead
are identified as a likely unknown fault. This means that
if training data only contains realizations from a few fault
magnitudes, fault ranking using 1SVM does not generalize
well and samples from other magnitudes of the same
fault class will likely be classified as an unknown fault.
The leakage data is ranked higher as an unknown fault
compared to the result of the MB classifier.
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Fig. 8. Evaluation of open set fault classification problem.
The different plots show the ranking of different fault
classes, including the unknown fault class, for the
different classifiers as a function of fault size where
the true fault class is marked in each subplot.

8. CONCLUSIONS

The complicating factors of the fault diagnosis problem
motivates the use of open set classification principles

that can handle imbalanced data and overlapping classes.
Experiments using both simulated and engine data show
that the proposed flexi-pipe model is suitable for residual-
based fault classification since it captures the variability of
residual data, even though training data is limited. Results
show that the flexi-pipe modeling approach generalizes
better than the conventional classifier approaches, both in
the closed set and open set fault classification scenarios.
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