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Abstract: The capability to follow a lead-vehicle and avoid rear-end collisions is one of the
most important functionalities for human drivers and various Advanced Driver Assist Systems
(ADAS). Existing safety performance justifications of car-following systems either rely on simple
concrete scenarios with biased surrogate metrics or require a significantly long driving distance
for risk observation and inference. In this paper, we propose a guaranteed unbiased and sampling
efficient scenario-based safety evaluation framework inspired by previous work on ϵδ-almost
safe set quantification. The proposal characterizes the complete safety performance of the test
subject vehicle in the car-following regime. The performance of the proposed method is also
demonstrated in challenging cases including some widely adopted car-following decision-making
modules and the commercially available Openpilot driving stack by CommaAI.

Keywords: Test and Validation, Scenario Sampling, Set Invariance, Advanced Driver Assist
Systems.

1. INTRODUCTION

The car-to-car rear-end collision has been the most com-
mon crash type in the U.S. for decades. Various Advanced
Driver Assist Systems (ADAS) have been developed and
deployed to help mitigate the read-end collision risk, in-
cluding crash-imminent braking (CIB), autonomous emer-
gency braking (AEB), traffic jam assist (TJA), adaptive
cruise control (ACC), and pedestrian crash avoidance mit-
igation (PCAM). In this paper, we are primarily inter-
ested in vehicle following ADAS implementations, which
cover a large portion of the currently available ADAS.
We assume the Subject Vehicle (SV) performs sufficiently
well in other operational modules, such as lane-keeping.
This is a common assumption and is feasible to achieve in
the practice of ADAS tests. We also emphasize that the
proposed approach is applicable to evaluate other ADAS
modules, such as the Lane-Keeping Assist System (LKAS),
but details are beyond the scope of this paper.

The safety evaluation of an ADAS-equipped SV in the car-
following and rear-end collision avoidance regime seeks to
characterize the SV’s safety performance against station-
ary/moving vehicles in front of the SV within the same
lane or along the SV’s current trajectory. One common
testing approach is to observe the SV’s performance in the
real-world or a simulated naturalistic driving environment
for a sufficiently long driving distance. One then observes
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or infers the collision rate estimate. This is formally known
as Monte-Carlo sampling, with other importance sampling
based variants from Zhao et al. (2017) that help improve
the sampling efficiency. However, the required testing ef-
fort is still too expensive and time consuming to be widely
applicable in practice. The naturalistic driving environ-
ment is not necessarily static and may vary significantly
from time to time. For those importance sampling based
variants, the importance function estimate was developed
with various heuristics, making it difficult to justify its
accuracy. Also, as reported by Weng et al. (2022), such a
statistical inference method occurs in an implicitly defined
operable domain with the tendency to over-estimate the
risk. Finally, a simple scalar measure of risk is not nec-
essarily sufficient to cover and justify the complete safety
performance of an SV.

The dominant approach adopted by most existing regula-
tions and standards follows the scenario-based test where
the SV is deployed as a black-box system (uncontrollable
and partially observable) in a testing case with the lead
vehicle following a certain prescribed behavior control
policy. The common practice in this case presents a finite
set of concrete scenarios and analyzes the testing outcome
through an independent safety metric (i.e. the metric is
computed independently from the test execution and data
acquisition, and the testing data is presented as it stands).
Some commonly observed concrete scenarios in the rear-
end collision avoidance regime include the car-to-car lead
vehicle braking in Forkenbrock and Snyder (2015), the sud-
denly revealed stationary vehicle (SRSV) and the lead ve-
hicle lane change and brake (LVLCB) in Rao et al. (2019),
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also known as the frontal cut-in scenario. The testing is
mostly performed in a real-word proving grounds with a
certain strikable target that emulates the motion and the
appearance of a lead vehicle. Some also execute the test
in a hardware-in-the-loop fashion such as the augmented
scenes by Feng et al. (2020). The results are then analyzed
using an extrinsic metric, such as the observed collision
rate, time-to-collision violation (TTCV) by Wishart et al.
(2020), and other surrogate measures summarized in Wang
et al. (2021). Note that this is also the testing approach
adopted by many regulatory standards such as the Eu-
rope NCAP by EuroNCAP (2019). However, as reported
by Weng et al. (2021b), the set of concrete scenarios has
very poor coverage of the SV’s operational domain and is
not of sufficient risk. The safety metrics are mostly biased
and fail to arrive at a consensus agreement and make a
fair comparison among various SVs as shown in Weng
(2021). The approach is also fundamentally problematic
if the underlying system is stochastic which is a common
phenomena in practice, especially with the increased in-
volvement of learning-based methods in perception and
decision-making modules.

In this paper, we propose a scenario-sampling framework
built on the Synchronous Pruning and Exploration (SPE)
for safe set quantification in Weng et al. (2021b) with vari-
ous improvements dedicated to the practical car-following
testing regime. The basic idea of the proposed framework
seeks to characterize the safe operational design domain
(ODD) of the SV in the car-following regime through
repeatedly sampling runs of scenarios in a guided manner.
With a certain desired confidence level, one can then claim
at what states the SV is potentially safe and how safe
the SV is within the derived set of states. The proposed
method is further demonstrated in Section 4, where it is
shown capable of capturing various subtle safety properties
and insights of widely adopted car-following models in
both academic research as well as commercially available
ADAS products. The studied ADAS are more realistic and
difficult to evaluate than some of the previous work by Fan
et al. (2017) and Zhao et al. (2016). To the best of our
knowledge, many of the obtained properties have never
been captured by existing work in the field.

Notation: The set of real and positive real numbers are
denoted by R and R>0 respectively. Z denotes the set
of all positive integers and ZN = {1, . . . , N}. |X | is the
cardinality of the set X .

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the general discrete-time system dynamics

s(t+ 1) = f(s(t);ω(t)) (1)

with state s ∈ S ⊆ Rn and uncertainties and disturbances
ω ∈ W ∈ Rw for some n,w ∈ Z. Let C ⊂ S denote
the set of failure states. Intuitively, for the system (1) to
remain statistically safe, there should exist an S∗ ⊂ S
with S∗ ∩ C = ∅ such that all trajectories initialized in
S∗ remain inside S∗ with high probability. The safety
performance justification then seeks to characterize the set
S∗. In practice, S∗ could be non-convex, non-unique, and
of other complex structures, leading to various challenges
for accurate characterization, statistically or determinis-

tically. In this paper, we adopt the ϵδ-almost safe set
based methods from Weng et al. (2021a). Some important
definitions and theorems are revisited in the following sub-
section.

2.1 ϵδ-Almost Safe Set

The following definition is adapted from Weng et al.
(2021b,a).

Definition 1. (δ-Covering Set)Given a compact set X ⊂
Rn for some n ∈ Z and δ ∈ Rn. For any x ∈ X , let
Nδ(x) be the δ-neighbourhood of x, i.e., ∀x′ ∈ Nδ(x), |x−
x′| ≤ δ. We claim that ΦX

δ is a δ-covering set of X
if for some k ∈ Z and xi ∈ X , i = 1, . . . , k, we have
ΦX

δ =
⋃

i∈{1,...,k} Nδ(xi) ⊇ X and ΦX
σ = {xi}i∈{1,...,k} ⊆

X . Furthermore, ΦX
σ are centroids of ΦX

δ .

Recall C is the set of failure states (e.g. collisions). The
following definition formally characterizes the notion of the
SV being “almost” safe in a certain set.

Definition 2. (ϵδ-Almost Safe Set) Given the system
dynamics (1), ϵ ∈ (0, 1], δ ∈ Rn, Φ ⊆ S. The set Φ is ϵδ-
almost safe for the system (1) if there exists a δ-covering
set Φδ of Φ with Φσ such that Φδ ∩ C = ∅ and

P
({

∀s ∈ Φσ,∀ω ∈ W : f(s;ω) ̸∈ Φδ

})
≤ ϵ. (2)

It is immediate from the above definition that limδ→0 Φ
X
δ =

X . Also note that as ϵ tends to zero, the ϵδ-almost safe set
becomes an absolutely safe δ-covering set. To adapt the
above definitions to the application of car-following regime
safety analysis, we shall first characterize the car-following
scenario in the form of (1).

2.2 The Scenario-based Car-Following System

In this paper, we consider the following system to formu-
late the interactive motion between a Subject Vehicle (SV)
follower and a leading Principal Other Vehicle (POV) in
the front sharing the same lane with the SV:

s(t+ 1) = fs(s(t),u(t);ωs(t)). (3)

The state s = [d, v0, v1] ∈ S ⊂ R3
≥0, where d ∈ [0,∞)

denotes the distance headway (simplified as headway or
DHW in this paper) between the two vehicles and v0 ∈
[0, vmax] and v1 ∈ [0, vmax] denote the longitudinal velocity
of the SV follower and the lead POV, respectively. In
practice, a significantly large value of d is not a safety
concern, hence the upper bound of d is often replaced with
a sufficiently large value dmax ∈ R>0. Other disturbances
and uncertainties are denoted as ωs ∈ Ws, which could
involve environmental features (e.g. weather condition and
road surface friction), infrastructure information (e.g. road
curvature, road gradient, and speed limit), other kinematic
and dynamic features (e.g. lateral offset between the vehi-
cles and acceleration status of vehicles), other road users
(e.g. pedestrian, cyclist, and other vehicles), planning pa-
rameters (e.g., free-traffic speed), and measurement error,
to name a few. As also discussed by Weng et al. (2022),
elements of the state s and some of the uncertainties
ωs may be interchangeable depending on a particular
feature’s observability and how important it is in deter-
mining safety related properties. For example, EuroNCAP
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(2019) considers the lateral offset between vehicles as an
important feature that affects the performance of the SV,
leading to an extra dimension added to the state s. The
action u ∈ U ⊂ R represents the control input of the lead
POV, such as the desired velocity and the commanded
acceleration. Note that the SV is the test subject in the
testing content, thus it is an uncontrollable and (partially)
observable black-box system (see Remark 3 in Weng et al.
(2021b)).

Furthermore, the action u is typically determined by a
certain feedback control policy

u = π(s, ωs;ωu), (4)

with s, ωs as defined above, and the uncertainties ωu ∈
Wu. Intuitively, the policy π describes the lead POV
driving behavior. In the scenario-based safety evaluation
regime, the testing policy is a given function.

As a result, composing (3) with (4) we have the exact
system dynamics of (1) with n = 3. The disturbances
and uncertainties ω ∈ W is jointly affected by s and
ωs in (3) and ωu in (4). In practice, the scenario system
may not necessarily exhibit the Markov Decision Process
(MDP) nature induced by (1) as the next-step state may
be dependent upon not only the current state, but also a
series of historic observations. One can extend the state
space to involve those observations, yet the state space
complexity will also increase significantly. In the particu-
lar car-following domain studied by this paper, we argue
that the capability of SV to take advantage of historical
information, if applicable, would only enhance safety per-
formance. As a result, the safety property obtained from
system (1) still remains as the worst-case justification.

A run of a test scenario, RS(s0,K) (K ∈ Z,K ≥ 2),
thus starts from a certain state initialization s0 ∈ S,
consecutively collects a set of states admitting the system
dynamics (1), and terminates either when encountering
a failure event (e.g., collision) or when the K-th step
of observation is reached. If f is explicitly known or
approximately characterized, one can execute the test
scenario and collect data through computer simulations.
On the other hand, the scenario-based test can also be
performed in a real-world testing proving ground with f
implicitly induced.

The standard scenario-based safety evaluation methods
(e.g. NCAP EuroNCAP (2019) and NHTSA guidelines
in Forkenbrock and Snyder (2015); Rao et al. (2019))
specify the s0 based on expert-knowledge and real-world
crash databases. The test policy π(·) is typically presented
as a deterministic function with constant deceleration
magnitude (e.g. π(s) = −6m/s2,∀s ∈ S in some of the car-
to-car AEB cases). In this paper, we adopt a similar design
of π(·) used by the above mentioned standardized tests
(i.e., the lead POV executes the braking maneuver at a
constant deceleration rate). This evaluates the SV’s safety
performance in a more adversarial environment than the
naturalistic driving environment. We also emphasize that
the proposed method does not rely on a particular testing
policy, and will generalize easily to other testing policies
such as those emulating naturalistic driving behaviors
in Zhao et al. (2016).

2.3 The Almost Safe Set Quantification Problem

Let a scenario-sampling algorithm consecutively sample
runs of scenarios on S following the system dynamics (1).
We are now ready to present the car-following safe set
quantification problem as follows.

Problem 1. Given δ ∈ Rn, ϵ ∈ (0, 1], and β(0, 1], a testing
policy π(·) in the form of (4), and the corresponding car-
following scenario system in the form of (1). Let S0 ⊆ S
be the sup-set of all safe sub-sets in S. The car-following
safe set quantification problem seeks to find a scenario-
sampling algorithm ALG : S × (0, 1] × (0, 1] × Rn → S,
such that with a confidence level of at least 1 − β, the
result of ALG(S0, ϵ, δ, β) is an ϵδ-almost safe set for (1).

The previous work by Weng et al. (2021b) has already
presented various algorithms that provably solve the above
problem with a primary focus on completeness and asymp-
totic optimality properties. Such properties occur as the
number of samples tends to infinity which leads to a
significant number of samples being required in practice.
In this paper, we propose a modified version of the Syn-
chronous Pruning and Exploration for safe set quantifica-
tion by Weng et al. (2021b) with a specific focus on the
car-following regime. This leads to a theoretically sound
and practically feasible safe set quantification solution as
we shall see in the next two sections.

We conclude this section by addressing the following
assumption and justifying its practical feasibility.

Assumption 1. Given the state space S, the set of failure
states C, and the system (1), we assume that the run of
scenario can be initialized from any s ∈ S \ C.

In practice, if one can control the engagement of the
subject ADAS sufficiently accurately, the above assump-
tion is naturally feasible, such as in the test protocol
by EuroNCAP (2019). On the other hand, if the ADAS
is expected to engage before triggering the test, accurate
initialization becomes more difficult for some states. In this
situation, the above assumption is most easy to achieve at
the control equilibrium sub-set of S. For example, v0 = v1
for some d ∈ R>0, which denotes the steady-state car-
following condition. This is also the initialization condition
adopted by Forkenbrock and Snyder (2015). Some non-
control equilibrium states can be initialized through cus-
tomized procedures. For example, in the LVLCB test from
the NHTSA report by Rao et al. (2019), the lead-vehicle
on the side lane can choose to perform a lane change at
any speed with any headway, which has the potential to
initialize some non-control equilibrium states such as when
v0 ≫ v1. Note that even with the above techniques, some
states are still difficult to initialize, such as v0 ≫ v1, d = 0.
However, those difficult-to-achieve initialization states are
typically of obvious high-risk, thus they may not need to
be tested anyway, as we shall see in Section 4.

3. MAIN METHOD

To solve Problem 1, the overall algorithm follows a two-
step procedure. First, one continuously constructs a can-
didate set as more runs of scenarios are collected through
scenario sampling. Second, as the constructed set becomes
close to the actual almost safe set, one should observe a
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sufficiently large number of runs of scenarios that start
from and remain inside the candidate set. For the second
step, the sampling sufficiency is justified by the following
theorem.

Theorem 1. (ϵδ-Almost Safe Set Validation) Given
the system dynamics (1), ϵ ∈ (0, 1], β ∈ (0, 1], δ ∈ Rn,
Φ ⊆ S, and the corresponding δ-covering set Φδ with
centroids Φσ defined by Definition 1. Consider N runs
of scenarios, {RSi(s0,K)}i=1,...,N (K ∈ Z,K ≥ 2), with
the state initialization of each run being i.i.d. w.r.t. the
underlying distribution on Φσ. The set Φ is the ϵδ-almost
safe set for (1) with confidence level at least 1 − β if⋃N

i=1 RSi(s0,K) ⊆ Φδ ∩ C = ∅ and N ≥ ln β
ln (1−ϵ) .

That is, under the given conditions, if one consecutively
observes ln β

ln (1−ϵ) runs of scenarios all remaining inside Φδ,

one then can claim with a confidence level at least 1 − β
that the probability of any trajectory starting from Φσ

leaving Φδ is less than ϵ, i.e., the SV is ϵδ-almost safe in
the set Φ. One can refer to Weng et al. (2021b) for the
proof of Theorem 1.

The proposed algorithm to solve Problem 1 is presented
as Algorithm 1 which relies on Theorem 1. Note that pop,
reachable, nearest, remove, and append are all notional
functions. X .pop() returns a point x ∈ X and removes it
from the set. reachable(s, G) returns all vertices on the
graph G that connects, directly and indirectly, to the point
s through a depth-first-search routine (see Weng (2022)).
X .nearest(x) returns the nearest point to x in X in terms
of ℓ2-norm distance. The commands remove and append
simply remove a point from or add a point to the given
set, respectively.

Overall, Algorithm 1 consists of four major steps. The
initialization step (line 2) configures two graphs, Gσ and
Gu, that are intended to contain potentially safe and ob-
served unsafe states and transitions, respectively, through
scenario-sampling. The sampling step (line 4-7) takes a
i.i.d. sample by Theorem 1 if the prioritized replay buffer
B is empty. Otherwise, i.e. when some unsafe states have
been observed and added to B at line 12, it prioritizes
sampling points in Φσ that are close to the points in B
as they are intuitively of higher-risk. Such a sampling
heuristic will not jeopardize the claimed property in The-
orem 1 for set validation, as B will be empty eventually,
but will accelerate the convergence to a sufficiently almost
safe set as unsafe points are removed more frequently.
The third important stage happens at line 10-19. When
a sampled run of a scenario is observed to converge to
C, any reachable states to the points in the collected run
are removed from Φσ. On the other hand (line 21-32), one
either adds an uncovered point to the covering set (line
23-25) or consecutively observes N runs of scenarios that
remain inside Φδ to claim the ϵδ-almost safe property.

The proposed algorithm differs from the SPE for safe set
quantification in Weng et al. (2021b) in two main ways,
(1) the use of prioritized sampling with a replay buffer
and (2) the removed stage of ϵδ decay. The prioritized
sampling with a replay buffer is a heuristic approach that
improves the convergence rate to a potentially almost
safe set. The fixed choice of δ and ϵ compromises the
probabilistic completeness of the algorithm in return for

practical feasibility with improved sampling efficiency (as
we shall also see empirically in Section 4). One can always
re-obtain the completeness and optimality properties, or
at least achieve an appropriate level of compromisation,
by configuring δ and ϵ to be arbitrarily close to zero,
yet the number of required samples might also increase
dramatically.

Algorithm 1 Car-following Safe Set Quantification

1: Input: Initial set S0 ⊆ S, collision set C, ϵ ∈ (0, 1],
β ∈ (0, 1], trajectory horizon K.

2: Initialize: The δ-covering set of S0, Φδ, and cen-
troids Φσ by Definition 1, the state graph Gσ =
(Φσ, Eσ), Eσ = ∅ ⊂ S2, the unsafe state graph Gu =
(Du, Eu),Du = ∅ ⊂ S, Eu = ∅ ⊂ S2, prioritized replay
buffer B = ∅, N=0.

3: While N < ln β
ln (1−ϵ) :

4: If B = ∅
5: s0 ∼ P (Φσ)
6: Else
7: sb = B.pop(), s0 = Φσ.nearest(sb)
8: End If
9: Get T = RS(s0,K)

10: If T ∩ C ≠ ∅
11: For i in Z|T |−1 do
12: B.append(T [i])
13: For s in Reachable(T [i], Gσ) do
14: Φσ.remove(s)
15: Eu.append((T [i], T [i+ 1]))
16: End For
17: B.append(T [i+ 1])
18: End For
19: N = 0
20: Else
21: s̄ = s0, Ns = |Φσ|
22: For i in {2, . . . , |T |} do
23: If T [i] /∈ Φδ

24: Eσ.append((s̄, T [i]))
25: s̄ = T [i]
26: End If
27: End For
28: If Ns = |Φσ| and B = ∅
29: N+ = 1
30: Else
31: N = 0
32: End If
33: End If
34: Output: Φδ

4. CASE STUDIES

To demonstrate the performance of the proposed Algo-
rithm 1, we start with examples of safety evaluations of
deterministic decision-making systems where the percep-
tion and the control modules are both sufficiently accurate.
We then move to an end-to-end case study taking the Com-
maAI’s Openpilot by Shihadeh et al. (2018) as an example
which involves a neural-network based perception module,
camera-radar sensor fusion, model-based decision-making,
and control modules. The source code for Algorithm 1 in
Python can be found at Weng (2022).
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Fig. 1. Some ϵδ-almost safe sets, presented as slices, obtained for the
car-following case study with various decision-making modules
(ϵ = 0.01, β = 0.001): (a) ACC-AEB with δ = [10, 2, 2], (b)
ACC-AEB with δ = [10, 6, 6], (c) N IDM with δ = [10, 6, 6], (d)
M IDM with δ = [10, 6, 6], (e) H IDM with δ = [10, 6, 6].

4.1 Decision-Making Safety Evaluation

We consider two classes of decision making systems in
this section. The first is a combination of ACC and AEB
(ACC-AEB) first introduced by Zhao et al. (2016). When
the perceived time-to-collision value is greater than a pre-
determined threshold, the ACC module is engaged as a
discrete Proportional-Integral (PI) controller to achieve
a desired time headway. Otherwise, the AEB module ex-
tracted from a 2011 Volvo V60 is active. Our ACC-AEB
module takes the same hyper-parameters and configura-
tion as Zhao et al. (2016), having a maximum braking
capability of −10m/s2 subject to a deceleration change
rate limit of−16m/s3. The second decision-making module
studied by this section is the Intelligent Driving Model
(IDM) in Treiber and Kesting (2013), which is a widely
adopted car-following model in the field. Note that we
have created three IDM variants based on the maxi-
mum brake control capability. In particular, we have the
normal-brake IDM (N IDM) with −5m/s2, the mild-brake
IDM (M IDM) with −3m/s2, and the hard-brake IDM
(H IDM) with −7m/s2. Other IDM parameters include
the minimum safe distance (2 m), maximum acceleration
(0.73m/s2), comfortable deceleration (1.67m/s2), safe time
headway (2 s), exponent of acceleration (4), and vehicle
length (4 m). Unless mentioned otherwise, we consider
the state space S with headway d ∈ [0, 100] m, SV speed
v0 ∈ [0, 30] m/s, and lead POV speed v1 ∈ [0, 30] m/s.
Note that the collected run of a scenario might leave S with
a large headway value that is greater than the given upper
bound (100 m), in which case one shall either truncate
the trajectory or saturate the headway value at the given
upper bound before proceeding to line 10 of Algorithm 1.
The simulation of each run of scenario operates at 10 Hz
with K = 300. The testing policy admits the form of
π(s) = −5m/s2,∀s ∈ S. We also assume the free-traffic
speed to be 30 m/s.

We execute Algorithm 1 for 10 times with 10 different
random seeds. The set of 10 seeds remains the same among
different SVs. Some of the obtained almost safe sets for
ϵ = 0.01, β = 0.001 are illustrated in Fig 1 for the same
seed. The three-dimensional safe set is illustrated with a
series of subplots on the (v0, v1) domain, each representing
a subspace slicing of a certain headway value. Intuitively,
on expects the size of the safe set to increase as the lead-
POV becomes further away since the state is of lower-
risk as the lead-POV operates at a higher speed than the
SV follower. This is mostly correct if one observes the
IDM cases where M IDM has the smallest almost safe set
and H IDM has the largest almost safe set, which aligns

Fig. 2. M IDM’s commanded acceleration inputs for a group of
(v0, v1) pairs at 40-meter headway in the car-following scenario.

with the underlying configurations of M IDM having the
lowest braking capability and H IDM having the strongest
braking capability among all tested IDMs.

However, for most of the subplots in the ACC-AEB case,
especially those with large headway values, one exhibits
a non-convex almost safe set with a white notch, which
indicates some unsafe states even when the headway is
sufficiently large. This is mainly due to the ACC design
nature where one tends to reach the free-traffic speed
aggressively when the headway value is high, v0 thus
increases, ending up in a certain unsafe state. For a similar
cause, ACC-AEB also fails all of the CCRb and CCRm
tests in Fig 6. As a result, if one considers the free-
traffic speed as an observable state and expands the S
to be of dimension four, the corresponding almost safe
set will also change w.r.t. the desired velocity. A detailed
analysis regarding this variant, and possibly other variants
considering different added features, are of future interest.

Returning to the notch observation, why isn’t a similar
shape showing up on any of the IDM variants in Fig 1?
This is because the IDM is primarily a car-following model
and may not necessarily exhibit expected behaviors out-
side the normal car-following work domain. For example,
Fig 2 illustrates the M IDM’s acceleration outputs for a
group of (v0, v1) pairs with 40-meter headway. Note that at
v0 = 12 m/s, v1 = 25 m/s, the M IDM decides to execute
maximum brake maneuver, rather than to accelerate to
track the desired speed. This leads to a utility performance
degradation in terms of velocity tracking, but on the other
hand, improves the safety performance against potential
rear-end collisions. Fundamentally speaking, the observed
phenomena is caused by a squared term associated with
the (v0 − v1) term in the IDM formulation, the details are
beyond the scope of this paper.

Table 1. Safety evaluation results for various decision-
making modules in the car-following case (β =
0.001, δ = [10, 6, 6]) of Section 4.1 and Openpilot pre-

sented in Section 4.2 (β = 0.001, δ = [3, 3, 3]).

SV S0 ϵ scenario runs collision runs IoU

ACC-AEB S 0.1 867.5± 281.2 268.3± 34.5 0.915
S 0.01 1912.6± 146.4 185.4± 1.4 1.000

H IDM S 0.1 194.2± 14.6 40.7± 3.2 0.965
S 0.01 1376.0± 182.1 49.0± 0.0 1.000

N IDM S 0.1 368.5± 95.0 69.6± 4.4 0.952
S 0.01 1628.8± 266.3 74.6± 0.8 0.998

Fig 1e 0.01 1578.6± 220.1 26± 0.0 1.000

M IDM S 0.1 830.9± 88.3 155.6± 3.7 0.956
S 0.01 1892.6± 237.5 161.0± 0.0 1.000

Fig 1e 0.01 1731.4± 125.5 112.0± 0.0 1.000

Openpilot S 0.1 704.2± 54.3 141.8± 3.4 0.897
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Moreover, comparing Fig 1(a) and Fig 1(d), the ACC-
AEB has a relatively larger safe set than M IDM when the
headway value is small. As the headway value increases,
the safe set of M IDM enlarges significantly and eventually
out-performs ACC-AEB in terms of the safe set size. That
is, the simplistic notion of “one vehicle being safer than
the other” can be problematic as it is essentially a multi-
dimensional comparison. A similar point was also made
by Weng et al. (2022) through observing real-world car-
following performance in the naturalistic driving environ-
ment. Such a subtle safety characterization is difficult to
obtain by existing concrete scenario-based testing strate-
gies such as the NCAP AEB testing shown in Fig 6.

More detailed results regarding this case are listed in
Table 1. The “IoU” denotes the intersection-over-union
ratio of all obtained safe sets from different seeds w.r.t.
the same SV. It is clear that the higher the IoU value, the
more similar the obtained sets are among different seeds.
Considering that the studied decision-making modules in
this section are both deterministic, the IoU value should
converge to one for sufficiently small ϵ and β. This has
been validated empirically by row 2, 4, 7, 9, and 10 in
Table 1. We emphasize that even for the cases with IoU
values less than one, the results are not wrong, as the ϵδ-
almost safe set is simply not unique for the studied system.
Also, note that if the set initialisation is not S0 but is
another set that is closer to the final almost safe set, one
should expect a smaller number of runs of scenarios and,
more importantly, a smaller number of runs of scenarios
with collisions, to converge to the desired outcome (e.g.
comparing row 6 with row 7, and comparing row 9 with
row 10 in Table 1).

Overall, the total number of runs of scenarios varies w.r.t.
the SV, the selected hyper-parameters (e.g. ϵ, β) and the
random seed but remains below 2000, which is less than
17-hours of actual scenario-running time (2000 runs of
scenarios with at most 30 seconds for each run) excluding
the testing preparation and scenario restoration time.
This is a slightly higher testing burden than the existing
standards for the car-following regime but should still
be considered feasible in practice. Moreover, the testing
effort may be further reduced for a smaller K, and the
exploration regarding this direction is of future interest.
More importantly, among the methods that are capable
of providing similar theoretical guarantees, the proposed
solution appears to be the most practical and is capable of
capturing the subtle differences among various SVs. For
comparison, the importance sampling and Monte-Carlo
sampling based methods reported by Zhao et al. (2017)
require hundreds of millions of test runs in simulation for
safety evaluation with car-following maneuvers and only
generate a risk estimate.

4.2 End-to-End Safety Evaluation

For an end-to-end case study, we evaluate the CommaAI
Openpilot’s safety performance in the car-following regime
through simulation using the Carla simulator. To run the
Openpilot in Carla, we use the Openpilot-Carla bridge
provided by CommaAI as a foundation to which we
have added clustered radar results for radar-camera fusion
needed to enable the ACC in Openpilot. The radar points

Fig. 3. Some ϵδ-almost safe sets, presented as slices, obtained for
the car-following case study with Openpilot for three different
random seeds (ϵ = 0.1, β = 0.001)

(a) ACC-AEB. (b) Openpilot.

Fig. 4. The ϵδ-almost safe sets (ϵ = 0.01, β = 0.001) obtained for
ACC-AEB and Openpilot in a lead-obstacle scene where the
lead-POV remains stationary for all time.

Fig. 5. The trajectories on the (v0, d) domain of Openpilot tested
in two standard NCAP Car-to-Car Rear moving scenarios.
For both scenarios, the lead POV remains at 20 km/h (5.56
m/s). All other parameters and environmental configurations
remain identical among all test runs for the same initialization
condition. Within each subplot, Openpilot is enabled at the
illustrated initialization state and both vehicles, unless specified
otherwise by the testing procedure, remain at the steady-state
stage with zero acceleration.

clustering configuration is identical to the work by Zhong
et al. (2021). The detailed implementation can be found
at Zhu (2022). The state space S takes the configuration
d ∈ [0, 30] m, v0 ∈ [0, 15] m/s, and v1 ∈ [0, 15] m/s. The
simulation of each run of scenario operates at 100 Hz with
K = 500. The free-traffic speed is 11.176 m/s (25 mph) if
v0(0) < 11.176 and v0(0) otherwise, which is the default
configuration of Openpilot.

Note that Openpilot is not designed for emergency col-
lision avoidance as indicated by CommaAI at Shihadeh
et al. (2018). It is primarily a car-following model. As
a result, an adversarial testing policy such as the one
adopted for the decision-making case could lead to a
very limited safe set. For example, as shown in Fig 4, if
the lead vehicle remains stationary (similar to the CCRs
case by EuroNCAP (2019) and also included in Fig 6),
the Openpilot SV rarely avoids any rear-end collisions
if v0 ≥ 4.5m/s. The Openpilot’s almost safe set is also
significantly smaller than a regular almost safe set in cases
such as the one shown for ACC-AEB in Fig 4a. In this
section, we admit the testing policy as π(s) = 0 m/s2,
which emulates the steady-state car-following situation.

We execute Algorithm 1 for 5 times with 5 different
random seeds. Some of the obtained almost safe sets for
ϵ = 0.1, β = 0.001 with three different seeds are illustrated
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Fig. 6. The testing outcomes of all studied SVs in Section 4 with the
standard NCAP car-to-car AEB testing procedure discussed
in EuroNCAP (2019). The procedure specifies 48 different
scenario configurations from three categories including the
Car-to-Car Rear stationary (CCRs), Car-to-Car Rear moving
(CCRm), and Car-to-Car Rear braking (CCRb), where the
lower-case letter after CCR induces the lead-POV’s driving
behavior (staying stationary, moving at a constant velocity, or
braking to stop). Each deterministic decision-making module is
only tested once. The Openpilot enabled SV is tested with the
same set of 48 scenarios for 10 times. The detailed parameters
related to the order of all testing cases can be found in
“ncap bridge.py” at Zhu (2022).

in Fig 3. Other statistical properties are summarized
in the last row of Table 1. Note that the IoU rate in
Table 1 is slightly smaller than the presented cases in
Section 4.1. This is mainly due to the fact that Openpilot
is fundamentally stochastic, as also illustrated by Fig 5
and Fig 6 where, starting from the same s0, the Openpilot
enabled SV is shown capable of generating both safe and
collision outcomes. As a result, the almost safe set for
Openpilot in the studied domain is fundamentally non-
unique, making it a particularly challenging case for many
existing scenario-based techniques and surrogate safety
metrics. As for the proposed method, the obtained safe set
aligns with the claimed operational domain by CommaAI.
The SV remains safe with high probability when v0 ≥ v1
regardless of the following distance. The size of the almost
safe set also increases as the headway value becomes larger.

5. CONCLUSION

In this paper, we have presented a theoretically sound
and sampling efficient scenario-sampling framework for the
safety performance evaluation of various car-following and
rear-end collision avoidance systems. The performance of
the proposed method has been demonstrated empirically
through a series of challenging cases. It is of future interest
to improve the completeness of the formulated scenario
state space and develop more sampling-efficient safe set
quantification algorithms. The proposed method is also
expected to generalize to the safety evaluation of other co-
operative car-following systems and human drivers within
the same operable domain.
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