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Abstract: Fault diagnosis is important for automotive systems, e.g., to reduce emissions and improve
system reliability. Developing diagnosis systems is complicated by model inaccuracies and limited
training data from relevant operating conditions, especially for new products and models. One solution
is the use of hybrid fault diagnosis techniques combining model-based and data-driven methods. In
this work, data-driven residual generation for fault detection and isolation is investigated for a system
injecting urea into the aftertreatment system of a heavy-duty truck. A set of recurrent neural network-
based residual generators is designed using a structural model of the system. The performance of this
approach is compared to a baseline model-based approach using data collected from a heavy-duty truck
during different fault scenarions with promising results.

Keywords: Methods based on neural networks for FDI, Structural analysis and residual evaluation
methods, AI methods for FDI, Modeling, supervision, control and diagnosis of automotive systems,
Filtering and change detection.

Fig. 1. The exhaust gas aftertreatment system of a Scania
heavy-duty truck.

1. INTRODUCTION

One of the main motivations of fault diagnosis in automotive
applications is to detect faults in components that could result
in increased emissions. One such example is the urea injection
in the exhaust aftertreatment system of heavy-duty trucks which
is used to reduce NOx emissions, see Fig. 1. With the increasing
system complexity and autonomy in modern vehicles, fault
diagnosis is also important in new applications, such as pre-
dictive maintenance, computer-aided troubleshooting, and self-
diagnosis functionality of autonomous systems (Theissler et al.,
2021). Two common fault diagnosis approaches are model-
based diagnosis and data-driven diagnosis.

In model-based diagnosis, a mathematical model derived from
physical insights about the system is used to detect inconsis-
tencies between sensor readings and model predictions due to

faults. Developing sufficiently accurate mathematical models
of dynamic systems for fault diagnosis is a time-consuming
process which has motivated the use of machine learning and
data-driven modeling (Qin, 2012). Data-driven fault diagnosis
relies on training data from different fault scenarios and oper-
ating conditions to classify which fault class that best explains
the observed system behavior. However, the performance of a
data-driven classifier depends on the quality of training data.
Collecting representative data to train such models is compli-
cated by the fact that faults are rare events which means that
training data from faults is scarce.

One solution is to use fault-free data to model nominal system
behavior to detect anomalies due to faults, e.g., using data-
driven residual generators. Even though it is possible to detect
faulty behavior, black-box models cannot be used to identify
unknown faults since there is no information how different
faults will affect the observations. Several researchers have
proposed to use recurrent neural networks (RNN) for residual
generation, where the network structure is selected based on
physical insights. This has been used for fault diagnosis of, e.g.,
industrial evaporators (Pulido et al., 2019), lithium-ion batteries
(Leonori et al., 2021), and internal combustion engines (Jung,
2022). One promising approach is to incorporate physical in-
sights into RNN models to enforce structural properties of the
model, see Jung (2019). This can be used to detect and isolate
unknown faults that are not represented in the training data by
making use of structural information about the system to design
residuals that are sensitive to different sets of faults.

This work is based on the results from a master’s thesis project
performed at Scania CV AB (Kleman and Lindgren, 2021).
A diagnosis system is developed for the system illustrated in
Fig. 1 by using the Fault Diagnosis Toolbox (Frisk et al., 2017),
to automatically design model-based and data-driven residual
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generators. A set of RNN-based residual generators is designed
using a structural model of the system and the approach is
described in Jung (2022).

2. PROBLEM STATEMENT

Developing diagnosis systems can be a time-consuming and
expensive process because of extensive model development and
the need of collecting data that is representative of the possible
realizations of the different fault classes. Hybrid approaches
combining model-based and data-driven techniques are attrac-
tive since they can take advantage of both physical insights and
available training data. The objective in this work is to eval-
uate the residual generation method proposed in Jung (2022)
where a set of RNN-based residual generators are constructed
using a structural model of the system. The performance of
this approach is compared to a baseline model-based approach.
The case study is the system for injecting urea into the af-
tertreatment system of a heavy-duty truck, see Fig. 1. For the
evaluation, data has been collected from a heavy-duty truck on
which different fault scenarios have been implemented.

3. BACKGROUND

Before analyzing the case study, some relevant background
information regarding model-based diagnosis and RNN-based
residual generation is presented.

3.1 Model-Based Diagnosis

Here, a brief introduction to model-based residual generation is
given and then how structural analysis methods can be used for
fault diagnosability analysis of non-linear systems and design
of diagnosis systems.

Residual-Based Fault Diagnosis One useful feature for fault
diagnosis is to compare system measurements y with model
predictions ŷ to compute residuals r = y − ŷ. A residual
generator is a function of known variables (sensor outputs and
actuators) that is, ideally, zero in the nominal case and deviates
when a fault is present. In practice, fault detection performance
is complicated by, e.g., model inaccuracies and sensor noise.

By designing different residual generators to monitor different
parts of the system, it is possible to get residual patterns
that can be mapped to different faults. When the residual
output is insensitive to a specific fault, it is said that the
fault is decoupled. The residual patterns can be derived from
the mathematical model and summarized in a fault signature
matrix, see, e.g., Travé-Massuyès (2014).

To detect significant changes in the residual outputs, different
types of change detection algorithms can be used, e.g., the
CUSUM (CUmulative SUM) test (Basseville et al., 1993). To
handle time-varying noise levels and disturbances, different
types of adaptive thresholds can be used that varies with dif-
ferent operating conditions, see, e.g., Pisu et al. (2005).

Structural Methods For non-linear systems, designing resid-
ual generators is a complicated task which requires systematic
tools to find redundant equation sets. Several algorithms have
been proposed for structural models to find redundant equation
sets for residual generation. A structural model is a bipartite
graph describing the relation between equations and variables
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...
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g(·)xin
xout

Hidden layers

ŷ

Output layer

Fig. 2. An illustration of a neural network model structure.

in the system model (Frisk et al., 2017). An advantage of
structural analysis is that detailed information about analytical
models and model parameters is not needed if a structural rep-
resentation of the system is available.

An example of a redundant equation set which has one more
equation than unknown variables is called a Minimally Struc-
turally Overdetermined (MSO) set (Krysander et al., 2007). A
matching algorithm is used to derive a computational graph
for an exactly determined equation set, which is achieved by
removing one equation from the MSO set. The computational
graph describes in which order to solve the unknown variables
in the equation set to compute the predicted variable. Then, the
redundant equation can be used as a residual equation. If the
analytical relations in the mathematical model are known, the
computational graph can be realized as a sequential residual
generator, see, e.g., Svärd et al. (2013); Frisk et al. (2017). If the
analytical relations or parameter values are unknown, a model-
based sequential residual generator cannot be used. However,
the computational graph can still be used to design RNN models
which is discussed next.

3.2 Residual Generation Using Recurrent Neural Networks

A neural network (NN) is a flexible machine learning model
that can capture the behavior of complex non-linear systems
(Goodfellow et al., 2016). A NN can be described as a compu-
tational graph where the inputs to the nodes in one layer are the
outputs from the previous layers. Model inputs are fed to the
first layer and the outputs are computed in the final layer, see
Fig. 2. Each node represents a non-linear activation function φ
of the weighted sum of the inputs xin,k to the node xout =
φ(
∑
k akxin,k + b) where ak and b are parameters. In this

work, the ReLU activation function φ(x) = max(0, x) is used
(Goodfellow et al., 2016). For dynamic systems, a special type
of neural networks, referred to as recurrent neural networks,
are used to model temporal information in time-series data.
Conventional NN/RNN models use a general-purpose multi-
layered structure and are, in general, data hungry. There is a risk
of overfitting if training data is limited and not representative of
all relevant operating conditions.

As proposed in, e.g., Jung (2019), deriving computational
graphs from a structural model of the system can be used to
design RNN structures that capture the structural relations be-
tween signals. Thus, the model does not need to learn this from
data which reduces the risk of overfitting. Another advantage
of deriving the network structure from a structural model is that
it is possible to isolate unknown faults, i.e., fault scenarios that
are not represented in training data (Jung, 2019). The principle
of deriving the RNN model structure is similar to deriving
a sequential model-based residual generator but the relations
between signals and state variables are modeled in the network
structure instead of using the analytical relations.
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Fig. 3. A schematic of the components in the aftertreatment
system model.

The RNN model structures that are considered in this work can
be written in the general state-space form

xt+1 = xt + Tg(xt, ut)

yt = h(xt, ut)
(1)

where the dynamics are numerically approximated using Euler
forward, T is sampling time, and the functions g and h are
approximated by a NN model structure similar to Fig. 2, and the
inputs to each function are given by the computational graph. A
more detailed description of the methodology that is used here
to design the RNN model structure is described in Jung (2022).

4. AFTERTREATMENT SYSTEM

The system used for the experimental setup is part of the
exhaust gas aftertreatment system illustrated in Fig. 3. This
system is responsible for dosing the right amount of urea into
exhausts so that it can react with the harmful NOx gases and
form nitrogen and water. The urea is stored in a tank from where
it is pumped through a series of hoses to a dosage unit that
injects the urea into the exhausts via a nozzle.

4.1 Model

First a mathematical model of the system is developed for
the model-based approach based on standard models of the
components in Fig. 3. The pump flow is modeled as qpump =
εpDpnpηvolp [m3/s], where εp is the displacement setting [0, 1],
Dp is the pump displacement [m3/rev], np is the pump speed
[rev/s], and ηvolp = 1 − Cv ∆p

|εp|npη
is the volumetric efficiency

[0, 1] where Cv is the laminar leakage losses, ∆p the pressure
difference over the pump, and η the viscosity.

The flows qi through the filters in Fig. 3 can be described by the
orifice equation as a function of the pressures before and after
each filter and the filter’s cross-sectional area Ai as

qfilt,t = CqAt

√
(2/ρ)(ptank − pbp) (2)

qfilt,p = CqAp

√
(2/ρ)(ptp − pbp). (3)

qfilt,du = CqAdu

√
(2/ρ)(pap − pdu) (4)

qori = CqAori

√
(2/ρ)(pdu − ptank ) (5)

The duty cycle (DC ) that is used to calculate the dosage flow
is calculated as DC =

qdose,req

qdose,max
, that takes the requested dose

divided by the maximum dosage flow possible at system pres-
sure. The DC signal is converted to a Pulse Width Modulation
(PWM) signal as PWM dose = f(DC ) by implementing a
PWM conversion function f() in Simulink.

The average dosing flow can be calculated using the orifice
equation multiplied by the duty cycle, as

qdose = DC · CqAdose

√
(2/ρ)(pdu − pexh) (6)

The dynamic of each pressure pi in Fig. 3, is modeled using the
continuity equation as

dptp

dt
=
βtp

Vtp
(qfilt,t − qfilt,p) (7)

dpbp

dt
=
βbp

Vbp
(qfilt,p − qpump) (8)

dpap

dt
=
βap

Vap
(qpump − qfilt,du) (9)

dpdu

dt
=
βdu

Vdu
(qfilt,du − qori − qdose) (10)

where βi is the bulk modulus and Vi the control volume [m3].

4.2 Modeling of Faults

Typical faults in the aftertreatment system are blockages and
leakages. The following faults are considered in the analysis:

• an actuator fault in the pump fq,pump ,
• blocking or leakages in hoses after the dosing unit fA,ori , in

the dosing unit fA,dose , before the pump filter fA,t, before
the pump fA,p, and before the dosage unit fA,du , and

• sensor faults in the pressure sensors at the dosing unit fy,pdu ,
before the pump filter fy,tp , and after the pump fy,ap .

Each fault is modeled as an additive term in the corresponding
model equation.

4.3 Data Collection

Experimental data has been collected from a heavy-duty truck.
Different fault scenarios have been evaluated by replacing
different components with faulty ones. In each fault scenario,
the following signals have been collected:

• three pressure sensors measuring before the pump filter yp,tp ,
after the pump yp,ap , and in the dosage unit yp,du ,

• the converted PWM signal PWM dose , and
• the pump speed np.

The training and test data sets consist of approximately 4600
and 2300 samples, respectively, per scenario. Data has been
collected from nominal operation NF (No Fault), a blockage
before the pump fA,p, a blockage after the dosing unit fA,ori ,
a blockage before the dosing unit fA,du , and a blockage at the
tank fA,t.

5. DIAGNOSIS SYSTEM DESIGN

Here, the diagnosis system design process is described includ-
ing model analysis and residual generation. The fault diagnos-
ability analysis in Section 5.1 is the first step of both the model-
based and RNN-based residual generation. The model-based
and RNN-based residual generation processes used here are
described in Sections 5.2 and 5.3, respectively. In this work,
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Fig. 4. Structural model of the aftertreatment system.

Fault Signature Matrix

Fig. 5. Fault signature matrix of the selected MSO sets.

only residual generators with integral causality are considered
since the current version of the tools used to construct the RNN-
models cannot handle differentiation of signals in the network
structure (Jung, 2022).

5.1 Fault Diagnosability Analysis

A structural model is formulated based on the component mod-
els described in Section 4.1. The structural model is shown in
Fig. 4 which has 18 equations, 15 unknown variables including
four state variables (marked I) and their derivatives (marked D),
9 faults, and 5 known variables.

From the structural model, 26 MSO sets are found. Out of these,
10 MSO sets are selected that can be used to construct residual
generators with integral causality. The fault signature matrix for
the selected MSO set describes which faults are affecting any of
the equations in each MSO set, see Fig. 5. A residual generator
that is based on one of the MSO sets will, ideally, be sensitive
to the corresponding faults in the fault signature matrix.

5.2 Model-Based Residual Generation

For each MSO set, one equation is selected as the residual equa-
tion and a computational graph is derived from the remaining
equations in the MSO set.

yp,ap

e18 pap

uPWM

e7

e3

e4

qfilt,du

qori

qdose

e11 ṗdu e15 pdu

yp,du

e16 r

Fig. 6. Computational graph based on MSO2 when e16 is used
as residual equation.

For illustration, Fig. 6 shows the computational graph based
on the set MSO2 when e16 is selected as residual equation.
Similar graphs are derived for the other MSO sets. A set
of model-based sequential residual generators is constructed
based on the computational graphs for each MSO set and the
analytical model equations derived in Section 4.1 using the
Fault Diagnosis Toolbox. In the example MSO2 the residual
output r is computed by evaluating the following sequential
residual generator in each time step:

e18 : pap := yp,ap

e7 : qfilt,du :=
√
2AduCq |pap − pdu |

√
|pap − pdu |/ρ

e4 : qdose :=

√
2AdoseCqPWM dose

195
|pdu − pexh |

√
|pdu − pexh |/ρ

e3 : qori :=
√
2AoriCq |pdu − ptank |

√
|pdu − ptank | /ρ

e11 : ṗdu := −(Bdu/Vdu )
(
qdose − qfilt,du + qori

)
e16 : r := pdu − ypdu

e15 : pdu := pdu + T ṗdu

where T is sampling time and the last step (e15) is a numerical
integration using Euler forward. A set of sequential residual
generators are constructed based on the other MSO sets fol-
lowing the same principles.

5.3 Neural Network-Based Residual Generation

The RNN-based residual generators are derived from the same
MSO sets as for the model-based residuals using the same com-
putational graphs. Since the analytical relations are assumed
unknown, an RNN model structure is derived based on the
dependencies between state variables and known variables by
backtracking in the computational graph. As an example, for
MSO2 when e16 is selected as residual equation, the resulting
recurrent neural network model structure is given as

pdu,t+1 = pdu,t + Tg(pdu,t , yp,ap,t,PWM dose,t)

rt = h(pdu,t)− ypdu,t
(11)

where t is used as time index and the state dynamics are
evaluated numerically using Euler forward. The functions
g : R3 → R and h : R→ R are modeled as NN structures,
similar to the structure illustrated in Fig. 2, with three hidden
layers, and one scalar output. The number of inputs is given
by the inputs to each function in (11). The RNN-based residual
generators are automatically implemented in PyTorch (Paszke
et al., 2017) using the approach in Jung (2022). Each RNN
model is trained on fault-free training data using the ADAM
solver (Diederik and Kingma, 2015). One observation from
the master’s thesis project was that developing the RNN-based
residuals was less time-consuming with respect to the model-
based residuals.
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Fig. 7. Left plot show comparison between sensor yp,du and
prediction ŷp,du using an RNN model based on MSO2.
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Fig. 8. Left plot show comparison between sensor yp,ap and
prediction ŷp,ap using RNN model based on MSO6.

6. EVALUATION

The resulting predictive performance of the RNN models based
on MSO2 and MSO6 are shown in Fig. 7 and Fig. 8, respec-
tively. The models capture the general trends in the signals but
have difficulties to predict oscillations caused by the dosing unit
because of the uncertainties in the PWM dose signal. A more
accurate way of modeling the dosing flow would be to include
the PWM signal to capture the pump oscillations by replacing
the DC with the PWM dose signal in (6).

To evaluate the performance of the RNN models, the resid-
uals are compared to the corresponding model-based residu-
als derived from the same MSO sets. The parameters of the
model-based residuals are optimized using the quasi-Newton
algorithm implemented in the Matlab function fminunc. The
results are shown in Fig. 9 where the model-based residuals
achieve better fault-to-noise ratio. Note that the fault fA,p is
correctly decoupled for the model-based residual according to
the fault signature matrix in Fig. 5. However, this is not the
case for the RNN-based residual in the two intervals starting at
sample 500 and 1200, respectively. An explanation is that data-
driven models do not generalize well. When the fault occurs,
the operating conditions deviate from the operating conditions
represented in training data, because the blockage affects the
pressure levels in the system, which results in false alarms.

To correctly decouple fA,p from the RNN-based residual
(MSO2) in Fig. 5, the first half of the test data set from fA,p
is included in the training data. Note that data from fault fA,p
still represents nominal system behavior of the residual model
since the faulty component is not modeled in the MSO set. The
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Fig. 9. A comparison between model-based and RNN-based
residuals on different fault scenarios. Note that the model-
based residual (MSO2) correctly decouples the fault fA,p.

500 1000 1500 2000

Sample

0

5

10

15
10

5

500 1000 1500 2000

Sample

0

5

10

15
10

5

Fig. 10. Comparison of predictive performance when using
only nominal training data in the left plot and including
data from fault fA,p. The right plot show when the data set
to the left of the dashed line is included in training data.

RNN model is trained using the expanded training data set.
The predictive performance of the original model that is trained
using only fault-free data is shown in the left plot in Fig. 10.
The updated model is shown in the right plot where data before
the dashed line is included in training data. It is visible that the
model predictions have improved in the right plot as they better
follow the sensor signal compared to the original model.

6.1 Combining CUSUM Test With Adaptive Thresholds

Since there is not enough information in the signals to model
the oscillations in the dosage unit, an adaptive threshold is im-
plemented to handle the varying residual noise. The oscillations
are correlated with the duty cycle of the PWM signal, and the
adaptive threshold is calibrated as a function of the duty cycle
using training data. The result in the left plot in Fig. 11 shows
the residual output and the adaptive threshold. The right plot
shows when the residual is divided with the adaptive threshold
to normalize the output.
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Fig. 11. The left plot shows the residual and the adaptive
threshold. The right figure shows the normalized residual.
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Fig. 12. Evaluation of the CUSUM test for different fault
scenarios.

To detect changes in the residual output, a CUmulative SUM
test is implemented based on the normalized residual in the
form Tt = max (0, Tt−1 + |rnorm,t | − 1) where T0 = 0,
rnorm,t is the normalized residual. A fault is detected when
Tt > J for some threshold J . Figure 12 shows the normalized
residual output of MSO2 in the left column using data from
different fault scenarios and resulting CUSUM tests are shown
in the right column. The outputs of the CUSUM test are
compared to a threshold chosen as J = 50 which shows that
the CUSUM test can further improve detection performance of
the normalized residuals while reducing the risk of false alarms.

7. CONCLUSIONS

The evaluations from the aftertreatment system case study show
promising results when using structural information to design
RNN-based residuals for fault diagnosis. As observed in the
modeling work, the RNN-based residuals can help reduce de-
velopment time with respect to the model-based residuals. The
fault diagnosis performance of the RNN-based residuals shows
the potential with respect to model-based residuals when model
information and training data are limited. Still, the quality of
training data is important as the predictive performance of data-
driven models quickly degrades when the system deviates from
the operating conditions represented in training data. Another

observation is the ability to take advantage of both model-based
and data-driven techniques to improve fault detection perfor-
mance, for example, combining change detection algorithms,
commonly used in model-based diagnosis, with the data-driven
residuals to adapt to variations in the residual noise.
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