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Abstract: Energy management in electric vehicles plays a significant role in both reducing energy 

consumption and limiting the rate of battery capacity degradation. The work summarized in this paper 

explores machine-learning techniques for electrified propulsion control in designing energy management 

(EM) controllers. The role of the EM is to coordinate delivery of multiple power requests from a modular 

battery of an electric vehicle (EV) to improve range and battery longevity. Reinforcement learning is 

adopted for integrated EV traction and HVAC controls. The EM acts as a supervisory controller augmenting 
the HVAC controls. It is designed to adjust internal HVAC control parameters based on current drive 

parameters to improve energy efficiency and battery state of health (SoH) without affecting driver demand 

and cabin comfort. An empirical battery aging model is incorporated into the problem formulation to address 

long-term battery capacity degradation. Reduced energy consumption and battery aging are demonstrated. 

Keywords: Electric vehicles, Energy management, Health-aware battery management, Artificial 

intelligence, Machine learning, Reinforcement learning  

 

1. INTRODUCTION 

This paper concerns with developing learning-based strategies 

for electric vehicle (EV) energy management. Effective energy 

management strategy (EMS) is a key enabler to improve EV 

range and long-term battery state of health given a particular 

hardware configuration. Energy management can specifically 

address the capacity fading of battery and energy loss during 

operation by optimizing operating points for various energy 

demands. 

In general, EV operation involves multiple loads or “energy 

consumers”, like traction, HVAC, battery thermals etc. that 

draw energy from battery. Simultaneous high-power 
consumption events reduce efficiency and accelerate battery 

aging. Traction request interpreted from driver often needs to 

be met without any modification, however, the other loads can 

be adjusted owing to their different time scales and dynamic 

responses without compromising their individual objectives. 

The focus of this paper is to develop a dynamic, real-time, 

battery-health-conscious load shaping mechanism and 

demonstrate it on the integrated traction and HVAC controls 

considering the traction and HVAC as the two major loads on 

the battery.  

We have built on our previous work where we utilized machine 
learning (ML) techniques; in particular, reinforcement learning 

(RL), in constructing these supervisory operating strategies. In 

(Haskara et al. 2021), we developed RL-based strategies for 

optimal operation of a hybrid energy storage system (HESS), 

that include a super-capacitor (SC) and a battery. The main 

objective of that energy management strategy (EMS) is to 

determine optimal power-split strategy which, for a given total 

traction power request, distributes this request between battery 

and SC in both drive and regen modes so that the overall energy 

efficiency and battery aging are improved. Through this 
optimized operating strategy, battery throughput and capacity 

loss have been  reduced significantly through the entire vehicle 

and battery life. RL has been demonstrated to produce 

comparable results to that of using dynamic programming in 

hybrid vehicle applications (Lee et al. 2020). Deep Q-learning 

(Li et al. 2021) and double deep Q-learning (Han et al. 2019) 

have been successfully used for electrified vehicle EM. 

In this work, we consider a modular battery as the single power 

source. However, we include a secondary power demand in the 

form of a closed-loop controlled HVAC system together with 

the main traction demand. Cabin comfort is included as an 
additional performance variable, which is quantified through 

cabin temperature response. Supervisory control to minimize 

total energy usage through HVAC temperature set-point 

variation has been used in conjunction with model predictive 

control (Wang et al. 2018). Similar methodology has been 

shown to reduce battery aging by 13% (Vatanparvar et al. 

2018). Dynamic programming has been used to regulate cabin 

temperature while also minimizing total energy use (Sakhdari 

et al. 2015). 

In this paper, RL is used to coordinate the HVAC operation 

with the traction demand. The primary reason for this choice is 
that RL offers a data-driven optimization scheme without 

requiring analytical representations of the dependence of 

HVAC power consumption with the traction states. 

Specifically, RL-based EM controller is designed as an 

additional optimization wrapper to improve the system-level 

energy efficiency instead of replacing the baseline HVAC 

controller, which could still employ a model-based structure. 

The remainder of the paper is organized as follows: Section 2 

provides the scope of integrated traction and HVAC control, 

the summary of the developed models as well as the proposed 
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reinforcement learning formulation. Section 3 presents the 

development process of the proposed designs with their 

performance on energy consumption and battery aging. 

Finally, Section 4 provides conclusions regarding the general 

applicability of the methods for other applications.  

2. METHODOLGY 

The proposed EM strategy is demonstrated on integrated EV 

traction and HVAC controls. 

 

Figure 2. Integrated EV traction and HVAC control scope 

Fig. 2 depicts power requests from the traction system (e.g., 

vehicle drive and regen) and the HVAC system (e.g., total 

power drawn by the HVAC actuators like blower motor, chiller 
etc.), which are controlled independently in default EV 

operation. As shown in Fig. 2, “the supervisory energy 

management strategy” is an add-on component that monitors 

instantaneous traction states, like vehicle speed and 

acceleration. It is tasked to modify a reference variable within 

the HVAC control system to improve the performance in terms 

of long-term battery aging. This is to be achieved without any 

change in traction response by design and no perceivable 

degradation in the driver’s desired cabin comfort. 

The proposed design includes formulation of EMS objectives 

in the reinforcement learning framework followed by a training 
and validation exercise to calibrate those strategies via data-

driven structures. Training and validation steps use a system-

level dynamic EV energy flow model and large-scale real-

world drive profiles in a high-performance computing (HPC) 

environment.  

2.1 Model development for energy management 

The vehicle model and simulation architecture (Fig. 3) 

represents the power flows during the EV operation. Starting 

from a given driver speed/acceleration request; it dynamically 

generates the mechanical traction power using vehicle 

longitudinal dynamics and the corresponding electrical 

dynamics using an EV drive (motor and inverter) model. This 
power demand is then converted to a battery power demand and 

other battery states like current, voltage, state-of-charge (SoC) 

and temperature. An empirical battery capacity model is used 

to capture battery aging impact of the EV operation. A model 

of HVAC system is also included to determine the 

instantaneous HVAC power request from the battery 

associated with the HVAC operation. HVAC system model 

includes a cabin model that keeps track of the cabin heat flow, 

cabin temperature and corresponding power drawn from 

battery as well as a closed-loop control system to maintain a 

desired cabin temperature. 

 

Figure 3. Electric Vehicle Model and Simulation Architecture 

The vehicle is modelled as point mass with longitudinal 

dynamics. Equation (1) describes the power demand 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

of the vehicle while travelling at velocity 𝑉𝑣𝑒ℎ and acceleration 

𝐴𝑐𝑐𝑣𝑒ℎ  on a road segment with grade 𝜃𝑔𝑟𝑎𝑑𝑒.   

𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉𝑣𝑒ℎ . (𝑀𝑡𝑜𝑡𝑎𝑙𝐴𝑐𝑐𝑣𝑒ℎ + 𝑀𝑐𝑢𝑟𝑏  𝑔 𝑠𝑖𝑛(𝜃𝑔𝑟𝑎𝑑𝑒) +

𝑀𝑐𝑢𝑟𝑏𝐶𝑟𝑟 𝑔 𝑉𝑣𝑒ℎ +
1

2
𝜌𝑎𝑖𝑟𝑉𝑣𝑒ℎ

2  𝐶𝑑  𝐴𝑓)         (1) 

The parameters of the model include the curb weight and 

equivalent inertia 𝑀𝑐𝑢𝑟𝑏 and 𝑀𝑡𝑜𝑡𝑎𝑙 respectively; rolling 

resistance 𝐶𝑟𝑟; air density 𝜌𝑎𝑖𝑟; aerodynamic drag coefficient 

of 𝐶𝑑; and effective frontal area 𝐴𝑓. 

The total power demand from the battery, 𝑃𝑏𝑎𝑡𝑡 , is the sum of 

traction power 𝑃𝐸𝑀 = 𝜂𝐸𝑀 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 and miscellaneous 

accessory power consumptions including a constant nominal 

power for instrument clusters, HVAC, battery thermal control 

etc. The battery is modelled with three primary states: state of 

charge (SOC); temperature (𝑇𝑏𝑎𝑡𝑡); and capacity degradation 

(𝑄𝑙𝑜𝑠𝑠). 

𝐼𝑏𝑎𝑡𝑡 =
𝑉𝑜𝑐−√𝑉𝑜𝑐

2 −4 𝑅𝑖𝑛𝑡 𝑃𝑏𝑎𝑡𝑡 𝑛𝑏𝑎𝑡𝑡

2 𝑅𝑖𝑛𝑡  𝑛𝑏𝑎𝑡𝑡
                      (2) 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) −
1

𝑄𝑏𝑎𝑡𝑡

𝑛𝑏𝑎𝑡𝑡 𝐼𝑏𝑎𝑡𝑡

3600 
 Δ𝑡        (3) 

The electrical dynamics of the battery is modelled as a zeroth 

order equivalent circuit using (2-3). The battery current (𝐼𝑏𝑎𝑡𝑡) 

is a function of the open circuit voltage of the battery pack 

(𝑉𝑂𝐶 ), internal resistance (𝑅𝑖𝑛𝑡), and battery efficiency (𝜂𝑏𝑎𝑡𝑡). 

SOC dynamics using (3) models the energy content of the 

battery based on the current drawn from battery and the 

capacity of the battery 𝑄𝑏𝑎𝑡𝑡 . Further, the parameters of the 

battery such as internal resistance, efficiency and open circuit 

voltage depend on temperature and SOC of the battery. 

Temperature dynamics of the battery is modelled as a lumped 
system. The electrical energy loss at the battery heats up the 

battery. 

𝑄𝑙𝑜𝑠𝑠(%) = 𝑎𝑐(. ) 𝑒𝑥𝑝 (−
𝐸𝑎𝑐

𝑅𝑔𝑇𝑏𝑎𝑡𝑡
) . 𝐴ℎ𝑛                    (4) 

The capacity degradation of the battery is represented with a 

heuristic model reported by Cordoba et. al. (Cordoba-Arenas 

2015) using (4). The model incorporates capacity degradation 
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effects of using the battery at various temperatures, electrical 

throughput of the battery (𝐴ℎ), and power drawn from the 

battery. The capacity loss 𝑄𝑙𝑜𝑠𝑠 is expressed as a percentage 
degradation from the nominal battery capacity  at the beginning 

of the battery life. 

In Equation (4), 𝑛 is a calibration constant, 𝑎𝑐  captures effects 
of battery temperature, depth of charge/discharge, and battery 

current, 𝐸𝑎𝑐 is the cell activation energy, 𝑅𝑔is the gas constant. 

These parameters require a large dataset of battery experiments 

to calibrate and fully validate. In this work, we use the 

parameter set from the original paper for lithium-ion batteries, 

which is deemed sufficient to compare different strategies.  

𝛥𝑄𝑙𝑜𝑠𝑠 =
𝜕𝑄𝑙𝑜𝑠𝑠

𝜕𝐴ℎ
. ∆𝐴ℎ = 𝑛. 𝑎𝑐(. ) 𝑒𝑥𝑝 (−

𝐸𝑎𝑐

𝑅𝑔𝑇𝑏𝑎𝑡𝑡
) . 𝐴ℎ𝑛−1. ∆𝐴ℎ  (5) 

We further define an instantaneous battery capacity loss 

rate, Δ𝑄𝑙𝑜𝑠𝑠, using (5). The Δ𝑄𝑙𝑜𝑠𝑠 term plays a significant role 

in defining  the reward function for reinforcement learning and 

helps weigh the impact of control actions on battery aging. 

The cabin temperature dynamics are modelled as a lumped 2-

state system. The states, cabin temperature (𝑇𝑐𝑎𝑏𝑖𝑛) and panels 

or body temperature (𝑇𝑝𝑎𝑛𝑒𝑙), exchange heat with each other 

and the ambient air. The heat transfer coefficients between 

panel and ambient air is 𝑘𝑎𝑚𝑏 and it increases with vehicle 

speed. The cabin receives energy from solar irradiation which 

is modeled as a heat input 𝑄𝑠𝑜𝑙𝑎𝑟 . Cabin HVAC controller relies 

on airflow rate to cabin and the temperature of the air being 
delivered to the cabin to regulate cabin air temperature. In this 

work, the HVAC controller is simplified to a cabin heat input 

𝑄𝐻𝑉𝐴𝐶  generation, which combines the two control levers, i.e., 

the flow rate (�̇�𝑏) and the temperature of the supplied air into 

the cabin (𝑇𝑠) by (6) 

𝑄𝐻𝑉𝐴𝐶 = �̇�𝑏𝑐𝑝(𝑇𝑐𝑎𝑏𝑖𝑛 − 𝑇𝑠)                 (6) 

𝑃𝐻𝑉𝐴𝐶 = 𝜂𝐻𝑉𝐴𝐶(𝑄𝐻𝑉𝐴𝐶 , 𝑉𝑣𝑒ℎ)𝑄𝐻𝑉𝐴𝐶           (7) 

The cabin heat input is modulated in closed-loop to maintain 

cabin temperature around its desired set-point. The 
corresponding flow rate and the flow temperature are then 

controlled by actuator-level controls. Cabin heat flow 

determines the instantaneous power drawn (𝑃𝐻𝑉𝐴𝐶) from 

battery. Efficiency of delivering heat to cabin is represented by 

𝜂𝐻𝑉𝐴𝐶  dependent on cabin heat flow and vehicle speed. 

2.2 Reinforcement Learning formulation 

Fig. 4 shows the general architecture of the RL-based EMS 

architecture on the integrated EV traction and HVAC controls. 

The EMS can receive and utilize a variety of signals including 

driver demand and current traction states (e.g., vehicle speed, 
accel, traction demand etc.), cabin comfort settings (e.g., cabin 

temperature set-point) and any available preview information 

(e.g., road grade). It has also access to real-time signals from 

the battery and cabin that are used to quantify a real-time 

performance reward for the reinforcement learning controls. 

The output of the EMS is a design variable to be selected as a 

control knob for HVAC power modulation.  

 

Figure 4. Reinforcement learning formulation for EMS 

There are several challenges that need to be resolved through 

the design. First, the EMS interacts with the local HVAC 

controls so the variable that EMS modulates needs to be 

compatible and not cause adverse interactions with the 

subsystem level control operations. Second, dependencies and 

varying time scales among various objectives need to be 

considered. For example, the traction dynamics are much faster 

than the cabin temperature dynamics whereas the battery aging 

is affected by both power, and it is a cumulative variable. 

An example case of how the EMS interacts with the subsystem-
level HVAC controls is shown in Fig. 5. The EMS augments 

the cabin temperature setpoint; tweaking it around a nominal 

value determined by cabin comfort metrics. The HVAC 

controller then uses this modified reference signal in 

modulating the HVAC actuators. A variety of regulation 

controller has been used for the baseline cabin temperature 

regulation.  

 

Figure 5. Example of EM subsystem controls interaction 

Another design aspect is to construct a reward signal that 
incorporates energy consumption, battery aging, and cabin 

comfort objectives. In the current design, traction power is to 

be delivered as it is, so there is no torque shaping allowed. For 

HVAC, cabin comfort is quantified through the level of 

variations in cabin temperature and Predicted Mean Vote 

(PMV) model. PMV is a common index that aims to predict the 

cabin comfort on a seven-point thermal sensation scale 

(Lahlaou et al. 2020).  The cabin comfort described using a 

PMV range can be translated into an allowable cabin 

temperature range for a given ambient temperature and 

assuming that the passengers belong to an average scenario in 

terms of metabolism, clothing etc. In this paper, we determine 
the comfortable temperature range independent of the EMS 

design so that the remaining control objective is to maintain the 

cabin temperature within this band during EMS operation. 

Finally, for the battery aging, we used the battery aging model 

as described earlier to penalize the delta capacity loss. 

The EMS is in essence an optimal control problem defined by 

(8) solved by reinforcement learning techniques. The function 

𝑟(. )  is the reward parameterized by states of the system, 
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disturbance, and optimization metrics. The control variable, 𝑎, 
is an additive term; together with the cabin comfort temperature 

(𝑇𝑐𝑎𝑏𝑖𝑛,𝑐𝑜𝑚𝑓), it defines the cabin temperature reference 

(𝑇𝑐𝑎𝑏𝑖𝑛,𝑟𝑒𝑓). Magnitude of 𝑎 is limited to an acceptable 

range  𝑇𝑃𝑀𝑉
̅̅ ̅̅ ̅̅  based on the PMV comfort metrics. 

𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

 𝐽 =  ∑ 𝑟(𝑆𝑂𝐶(𝑘), 𝑄𝑙𝑜𝑠𝑠(𝑘), 𝑃𝑑𝑒𝑚(𝑘))∞
0    (8) 

such that,  

|𝑎| ≤ 𝑇𝑃𝑀𝑉̅̅ ̅̅ ̅; 𝑇𝑐𝑎𝑏𝑖𝑛,𝑟𝑒𝑓 = 𝑇𝑐𝑎𝑏𝑖𝑛,𝑐𝑜𝑚𝑓 + 𝑎 
𝑆𝑂𝐶(𝑘), 𝑄𝑙𝑜𝑠𝑠(𝑘), 𝑇𝑐𝑎𝑏𝑖𝑛(𝑘) … ∈ 𝑋(𝑘) 
𝑋(𝑘 + 1) = 𝑓(𝑋(𝑘), 𝑓𝑅𝐿(𝑎), 𝑃𝑑𝑒𝑚) 

The states of the system are denoted 𝑋 and the states transition 

is affected by the control through the transformation 𝑓𝑅𝐿 (𝑎). 

3. DESIGN PROCESS AND RESULTS 

The design process tailors the RL algorithms into a formulation 

equivalent to the optimal control problem described previously 

and solve it by learning the input-output mapping of the RL 

strategy. The objective is to maximize the design reward by 

running through representative drive cycles with traction and 

HVAC controls.  

3.1 Reinforcement learning design 

The RL formulation considered in this work as EMS controller 

augments the cabin temperature setpoint (e.g., RL action); the 

main inputs to the RL (or RL states) are vehicle power demand, 

vehicle acceleration and vehicle speed. The specific role of RL 

in all formulations is to populate this defined input-output 

mapping. Formally, the state-action and reward are described 

below: 

RL States:  𝑠 = {𝑉𝑣𝑒ℎ (𝑘), 𝐴𝑐𝑐𝑣𝑒ℎ(𝑘), 𝑃𝑑𝑒𝑚(𝑘)} 

RL Action: A = {Cabin temperature setpoint modifier 𝑎(k)} 

RL Policy: 𝜋(𝑠) → 𝑎 

RL Reward function: 𝑟(Δ𝑄𝑙𝑜𝑠𝑠 , 𝑇𝑐𝑎𝑏𝑖𝑛,𝑐𝑜𝑚𝑓 , 𝑇𝑐𝑎𝑏𝑖𝑛) 

The reward function for the reinforcement learning is defined 

using a weighted sum of Δ𝑄𝑙𝑜𝑠𝑠 and 𝑇𝑒𝑟𝑟𝑜𝑟  which measures 

deviation of cabin temperature from 𝑇𝑐𝑎𝑏𝑖𝑛,𝑐𝑜𝑚𝑓 .  

𝛥 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

 𝑟 = − (𝑤1  𝛥𝑄𝑙𝑜𝑠𝑠 + 𝑤2 𝑇𝑒𝑟𝑟𝑜𝑟
2  )      (9) 

The aging term 𝛥𝑄𝑙𝑜𝑠𝑠 quantifies instantaneous battery aging at 

the current time based on the total throughput, battery current 

and temperature and 𝑇𝑒𝑟𝑟𝑜𝑟  is the cabin temperature response 

to capture the cabin comfort in the reward. The temperature 

term ensures that the RL does not converge to a trivial solution 

of choosing the furthest cabin temperature allowed by design. 

For implementations, a custom RL toolbox has been developed 
in a modular form in MATLAB and used to explore different 

EMS formulations. During the implementations, RL 

adjustment has also been applied at sampled data points and 

held constant over a defined window. The instantaneous reward 

is also integrated over this window to determine a cumulative 

reward, which is then used in updating the Q-value for Q-

Leaning and SARSA learning updates by (10-11): 

Q-learning (off-policy algorithm): 

𝑄(𝑠, 𝑎)𝑄(𝑠, 𝑎) + 𝜎 ∙ (𝑟 + 𝛾 ∙ 𝑚𝑎𝑥𝑎 𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎))        (10) 

SARSA (on-policy algorithm): 

𝑄(𝑠, 𝑎)𝑄(𝑠, 𝑎) + 𝜎 ∙ (𝑟 + 𝛾 ∙ 𝑄(𝑠′ , 𝑎′) − 𝑄(𝑠, 𝑎))       (11) 

where a is the current action (RL action), s are the states, r is 

the reward function, 𝑚𝑎𝑥𝑎 𝑄(𝑠′ , 𝑎, 𝜖) is called greedy policy, 

𝜎 is the learning rate, 𝛾 is the discount factor and 𝜖 is the 

exploration probability in the greedy policy. The parameters of 

the RL algorithms have been generated using a novel 

adaptation scheme as will be described in Section 3.2.  

The Q-value is represented as an N-dimensional look-up table 

for ease of access and interpretability. In storing and updating 

the Q-values over the input-action space, a quantization scheme 

is applied. In general, the quantization step should be fine 

enough to capture effects of changing states and control 

variable smoothly; and coarse enough to reduce the size of the 

Q-value mapping. Sparsity of trained policy increases with 

finer discretization and number of states, which may improve 

in turn the optimality of final policy.  

3.2 Hyperparameter selection 

Another key design aspect is selection of RL hyperparameters. 

Hyperparameters define how learning is executed and affects 

convergence & optimality of the final policy, which is essential 

for success of RL algorithm implementation. 

Table. 1. Main design hyperparameters 

 

Table 1 shows the three main hyperparameters with their main 

description and impact on learning. There is a strong coupling 

among those parameters and how to select them is usually ad-

hoc and involves some level of trial and error. In this paper, we 

used an adaptation scheme that adjust them over the course of 

training to change the training behaviour as the learning 

continues. 

Among them, exploration probability (𝜖) is the proportion of 
“exploration: trying something new” to “exploitation: building 

on what is already learned” at a given learning step. In the 

adaptive scheme, exploration probability has been chosen to 

have a decaying characteristic with the episode number, which 

is set high in the initial phase of training to encourage 

exploration and then set to decay as the learning improves. 𝜖 is 

adapted from the initial 𝜖0 over the training using (12), where 

D is the decay rate which has to be chosen appropriately. 
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𝜖 = 𝜖0 𝐷𝑒𝑝𝑖𝑠𝑜𝑑𝑒                                     (12) 

Learning rate is adjusted to reflect the level of confidence in 
current policy over new experiences. A typical desired learning 

rate curve can be generated using (13). The weighting term 

𝑤𝛼determines the adaptation rate. As illustrated in Fig. 6, the 

value of 𝛼 is set to be bounded so that the RL policy continues 

to get updated. 

𝛼 =
1

1+𝑤𝛼 episode
                                (13) 

 

Figure 6. Adaptive learning rate selection 

 

Figure 7. Discount factor impact on performance 

 

These hyperparameters have influence on the optimality of the 

resulting solution as well. Fig. 7 illustrates the impact of 

discount factor on battery capacity loss and battery throughput. 

3.3 Results 

This section summarizes example results from the training and 

validation process through driving the EV models by various 

drive profiles. An energy consumed breakdown during an 

initial training profile, which was an FTP cycle, is shown in 

Fig. 8 where episode number indicates the training iteration and 

cumulative energy consumed for each load in Joules is plotted 

per episode number. Here, the consumed traction energy stays 

the same since we don’t allow any torque/speed shaping in the 

design, yet the total HVAC energy, and in turn the total energy, 

has a reducing trend as the training evolves.  

 

Figure 8. Convergence during RL training  

Drive cycle is the primary disturbance to the system. Statistical 

properties of the drive profile are key in achieving the general 

optimality and robustness of the data-driven solution. Hence, 

we have used long real-world drive profiles. Figs. 9-11 

represent example validation results on these real-world drive 

profiles where RL was adjusting the nominal cabin heat input 

controls dynamically via perturbations to the temperature set-

point. Fig. 9 shows the heat flow per time for baseline controls 

(nominal) and after adjusted by the RL-based EMS. A PI 

controller has been designed to achieve the cabin temperature 

regulation that adjusts the heat delivery into the cabin. The 
nominal case uses this control only with the default temperature 

set-point. Fig. 10 shows the resulting cabin temperature 

response and the vehicle speed. Note that, EMS maintains the 

cumulative HVAC heat input the same in order not to impact 

the cabin comfort, yet applies small dithers in both directions.  

 

Figure 9. Heat flow input to cabin 

 

For the current example, HVAC was running in cooling mode, 

and EMS, in essence, was adjusting the cooling level based on 

current traction states. Specifically, it slightly increased 

cooling at higher speeds and decreased at lower vehicle speeds 

leveraging the efficiency dependence of the AC operation on 

the vehicle speed. A similar mechanism can also be interpreted 
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through the traction power demands where the EMS adjusts the 

HVAC power to reduce the simultaneous high demands from 

both systems to improve battery aging. 

 

Figure 10.  Cabin temperature response and vehicle speed 

 

 

Figure 11. Example cycle-end performance 

 

Finally, Fig. 11 includes the cumulative cycle-end values for 

various variables normalized with respect to their nominal 

values demonstrating energy efficiency and battery aging 

improvement with the current EMS while maintaining about 

the same total heating flow through the drive profile.  

4. CONCLUSIONS 

More efficient BEV energy management can be achieved using 

a supervisory controller that better coordinates multiple power 

requests (drive, thermal, HVAC, etc.). In this paper, we 
developed such an energy management control strategy and 

demonstrated it on the integrated EV traction and HVAC 

controls. Optimal strategy modifies an HVAC set-point in 

response to vehicle states and power demands. The design 

process included creating a large-scale simulation platform, 

developing custom RL toolbox and EV models for fast training 

and performance evaluations in an HPC environment. 

It was shown that the battery aging and energy efficiency can 

be improved without affecting the total heat flow to the cabin. 

Note that EMS did not use torque shaping or rely on an 

additional energy storage system, instead generated a small 

dynamic perturbation near the nominal cabin temperature set 

point with zero mean. Further improvement in the overall 

performance could be realized by increasing the control degree 

of freedom in the previously mentioned aspects. Another 
contribution of this work was to devise a novel adaptive 

hyperparameter selection scheme, which simplifies the RL 

calibration and convergence. In general, reinforcement 

learning to design energy management controllers both reduces 

calibration effort during design phase by enabling 

incorporation of various optimization objectives into the final 

calibration and generates a real-time self-learning mechanism 

deployable in the field.  
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