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Abstract: Most studies evaluating the energy efficiency of connected and automated vehicles
(CAVs) in car-following scenarios have considered a few preceding vehicles communicating with
the controlled CAVs. However, considering rapidly evolving technologies in CAVs, extended
vehicle-to-vehicle (V2V) connectivity over large-scale traffic needs to be considered in estimating
CAVs’ energy benefits. This paper investigates the potential energy saving of V2V-connected
vehicles in large-scale downstream traffic by adopting a human driver model generating stable
car-following trajectories for many consecutive vehicles. The energy-efficient driving of a CAV
is demonstrated based on an optimal controller minimizing the longitudinal acceleration by
forecasting an immediately preceding vehicle’s trajectory over a fixed prediction horizon. Various
traffic scenarios are considered by applying different simulation parameters, including the
distribution of vehicle time gaps, the number of connected vehicles, and prediction horizon
lengths. Furthermore, a comprehensive analysis is conducted to discover the relationships
between the parameters of interest and system performance, including prediction and control.
Our findings from the parameter study are validated by evaluating the realistic energy
consumption of a vehicle in a simulation platform operating high-fidelity powertrain models.

Keywords: optimal control, electric vehicles, connected and automated vehicles, intelligent
transportation, modeling and simulation of transportation systems

1. INTRODUCTION

The advent of advanced communication technologies,
such as the fifth-generation (5G) mobile network, makes
cellular-based vehicle networks available over extended
ranges with less delay (Wang et al. (2017)). As faster and
broader communication becomes available on the road,
the potential energy saving of CAVs has been increas-
ing in recent years. Specifically, CAVs can minimize en-
ergy consumption by optimizing driving maneuvers such
as steering, throttling, and braking, also known as eco-
driving control in previous literature (Sciarretta et al.
(2015)). Amongst various eco-driving control strategies,
constrained optimal control in car-following scenarios has
attracted considerable attention because the presence of a
preceding vehicle is common in the real world (Sciarretta
et al. (2020); Bae et al. (2019)).

In the car-following scenarios, forecasting the preceding
human-driven vehicle’s trajectory plays an important role
in reaching the maximum energy efficiency of a CAV as
well as avoiding collisions (He and Orosz (2017)). Thus,
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many studies have developed prediction techniques using
CAV technologies to enhance prediction accuracy (Moser
et al. (2015); Jing et al. (2015)). The prediction accu-
racy and consequent optimal control performance, how-
ever, could be significantly dependent on the driving en-
vironment including V2V penetration rates, car-following
aggressiveness and heterogeneity. (Vahidi and Sciarretta
(2018)). For example, the accuracy of predictors using
V2V information as their input features might be degraded
under limited V2V connectivity (Hyeon et al. (2019)).
In addition, when following aggressive drivers, an eco-
driving controller may bring larger energy benefits because
aggressive driving demands more fuel consumption (Liu
et al. (2016)). Moreover, employing acceptable system
parameters is critical for maximizing the benefits of us-
ing eco-driving control systems. Moreover, the eco-driving
control system can internally maximize its benefits by
optimizing key parameters and adding control complexity.
For example, using an insufficient length of prediction hori-
zons may limit the energy saving allowed to the system,
while an excessively long horizon makes the system waste
computational resources (Prakash et al. (2016)).

To our best knowledge, most previous studies have as-
sessed CAVs’ energy saving in limited domains; the num-
ber of connected vehicles is not more than 10, and road
participants have similar driving styles by sharing the
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Fig. 1. Schematic overview of this work.

same model parameters (Hyeon et al. (2019)). Consider-
ing extended connectivity from rapidly evolving vehicle
communication technologies, analyzing the CAVs’ energy-
saving performance in a large-scale traffic environment
is necessary. However, it is challenging to generate the
realistic car-following trajectories of a large number of
consecutive vehicles for extensive traffic generation.

In order to address the aforementioned issue, this paper
adopts a novel human driver model developed by Han
et al. (2022), which has high fidelity and reliability toward
extensive traffic generation. By employing this human
driver model, the performance of our eco-driving control
system is investigated in large-scale downstream traffic.
Fig. 1 shows the schematic overview of this work. First,
large-scale traffic scenarios are generated with the various
distributions of time gaps between vehicles. Then, the car-
following of a CAV driven by an eco-driving controller is
simulated with various simulation parameters, including
(1) the time gap between vehicles to address car-following
styles, (2) the number of connected vehicles representing
V2V connectivity, and (3) prediction horizon length indi-
cating look-ahead ability. Our eco-driving controller min-
imizes longitudinal acceleration while avoiding collisions
from a preceding vehicle, where a V2V-enabled predictor
estimates its future trajectories proposed in Hyeon et al.
(2021). Next, a comprehensive analysis is conducted by
evaluating the performances of both the controller and
predictor and discovering their relationships. Furthermore,
trajectory predictors not using V2V information are im-
plemented in the same scenarios and their performances
are compared with the V2V-enabled predictor to evalu-
ate the performance reliability over the different levels of
V2V connectivity. Finally, realistic energy consumption is
computed by implementing the same scenarios in a high-
fidelity traffic and vehicle simulation software to validate
our findings.
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The paper is organized as follows: In Section 2, the eco-
driving control system used for this work is described
including a control algorithm and various approaches for
forecasting the target vehicle’s trajectories. Section 3 ex-
plains simulation settings for the parameter study and the
traffic model used for generating large-scale traffic. Sec-
tion 4 presents and discusses the results of the parameter
study. The parameter study is extended by using the high-
fidelity vehicle simulator to compute realistic energy con-
sumption, where the results are summarized in Section 5.
Finally, Section 6 concludes this paper.

2. ECO-DRIVING CONTROL SYSTEM

This section concisely explains the eco-driving control sys-
tem used in this paper by summarizing the eco-driving
controller and trajectory predictors developed in our previ-
ous work. In order to avoid confusion, the following termi-
nologies are used to indicate vehicles in this paper: the ego
vehicle is the CAV controlled by the eco-driving controller
introduced in Section 2.1; the target vehicle is the vehicle
immediately in front of the ego vehicle and the prediction
target of the ego vehicle, and the preceding vehicles are
all the vehicles driving in front of the target vehicle. The
definitions of these terminologies are visualized in Fig. 1.

2.1 Eco-Driving Controller

This work uses an eco-driving controller developed in our
previous work Han et al. (2020). This controller minimizes
acceleration to reduce energy consumption indirectly. The
eco-driving controller has a two-level approach to provide
the reference states of the next time step in a model
predictive control fashion: (1) The upper level selects the
desired driving mode assuming free flow and plans speed
accordingly, and (2) the lower level is aware of the target
vehicle’s existence and plans speed to maintain the desired
distance gap from the target vehicle. The lower level uses
the target vehicle’s estimated final position and speed at
the end of the prediction horizon to optimize the final
position and speed of the ego vehicle. Then, the state-
constrained trajectories are produced by considering the
predicted trajectory of the preceding vehicle. This ana-
lytical approach guarantees that the real-time computing
capability of the eco-driving control algorithm does not
suffer from the increase in the prediction horizon.

2.2 Vehicle Trajectory Predictor

To estimate the final position of the target vehicle, four
types of predictors are implemented and compared:

(1) Accurate preview (“perfect”):
accurate final position is given.
(2) Constant speed (“CS”): the current speed of the
target vehicle is propagated to compute the target
vehicle’s final position.
Constant acceleration (“CA”): the current accelera-
tion of the target vehicle is propagated to compute
the target vehicle’s final position.
V2V predictor (“V2V”): V2V information transmit-
ted from preceding vehicles is used to calculate target
vehicle’s future position.

the target vehicle’s
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The V2V predictor proposed by Hyeon et al. (2021) esti-
mates the future speed profile of the target vehicle based
on a locally weighted polynomial regression (LWPR) algo-
rithm. This predictor uses the preceding vehicles’ current
speed and position as its input features. We assume that
these types of information can be delivered to the ego vehi-
cle via V2V communication according to Dedicated Short
Range Communications Technical Committee (2016).

3. SIMULATION SETTINGS

This section presents simulation settings for the parameter
study. Amongst various system parameters, this work
focuses on the following four parameters:

(1) The mean of time gaps between vehicles (u,),
(2) The standard deviation of time gaps (o),

(3) The length of prediction horizons (T'), and
(4) The number of connected vehicles (Ncy ).

A time gap between vehicles is regulated because short
time gaps could cause oscillations in vehicles’ speed profiles
leading to more energy consumption. In this study, we
assume that time gaps between vehicles follow a normal
distribution. The mean of time gaps (u,) is selected as
0.5, 1, and 1.5 s—considering the characteristics of real-
world driving according to Winsum and Heino (1996). In
addition, the standard deviation of the time gap (o) is set
to 0 s and 1 s to address homogeneous and heterogeneous
time gaps, respectively.

The logic behind choosing the third and the fourth pa-
rameters is well described in Section 1. The prediction and
control horizons are synchronized in this work, chosen from
10, 20, 50, and 100 s. The number of connected vehicles is
selected from 8, 20, 50, 80, and 100.

3.1 Traffic Model

A traffic model that can handle many consecutive vehi-
cles’ trajectories is necessary to generate large-scale traffic.
This work adopts an analytical anticipative optimal driv-
ability model (A20DM) proposed by Han et al. (2022).
The A20DM can capture dynamic car-following behavior
while maximizing driving comfort without collisions with
high computational efficiency. Moreover, the A20DM has
higher accuracy than an intelligent driver model developed
by Treiber et al. (2000), one of the most commonly used
traffic models for simulating human drivers’ car-following
behavior. In the A20DM, the following vehicle’s equation
of motion is characterized by the acceleration optimizing
drivability. The acceleration is the function of states and
parameters, including desired time gap from a preceding
vehicle, desired speed and acceleration, and safety dis-
tance. In this study, only the first lead vehicle’s drive cycle
is given, and the A20DM generates the trajectories of
the rest of the vehicles. A total of a hundred vehicles are
simulated where the first lead vehicle drives the UDDS
cycle for this study.

3.2 Performance Metrics
To measure the optimal control performance, we used

acceleration energy because our controller minimizes ac-
celeration in its formulation. In other words, acceleration
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Fig. 2. Speed profiles of the first lead vehicle, target vehicle,
and the vehicles between them (dotted lines) with the
time gap mean of 0.5 s (top) and 1.5 s (bottom).

energy indicates the smoothness of trajectory computed
by the following:

Ba=§ Y00 o (k) (1)
where a is longitudinal acceleration (and deceleration) that
the ego vehicle employs, and N, is the total number
of time steps in a trip. Realistic energy consumption is

assessed in the later section.

Since the controller uses the predicted position of the
target vehicle at the end of the prediction horizon to
compute state constraints, the root-mean-squared error of
the target vehicle’s final position estimates is selected as
the predictor’s performance metric.

4. SIMULATION RESULTS AND DISCUSSION

The eco-driving simulation results from varying the pa-
rameters selected in Section 3 are presented in this sec-
tion. The following sections discuss the impacts of each
parameter on prediction and control performances.

4.1 Mean and Standard Deviation of Time Gap

Fig. 2 compares the A20DM simulation results with
100 vehicles using the different mean values of the time
gap distributions. In this analysis, the prediction horizon
length is fixed at 100 s to focus on the effect of the time
gaps in traffic. The results show that having the mean of
time gaps of 1.5 s results in the smoother speed profiles of
the following vehicles compared to 0.5 s. This phenomenon
occurs because keeping a longer gap from its preceding
vehicle gives a longer reaction time, especially under the
preceding vehicle’s abrupt braking.

As shown in Fig. 3a, acceleration energy generally de-
creases with the mean value of the time gap for all the
ego vehicles, regardless of the prediction methods and the
target vehicle. The dotted lines indicate the results tested
in the traffic with the standard deviation of the time gap
of 1 (0, = 1). The results show that the impact of mean
of time gaps is attenuated in the heterogeneous traffic.
This phenomenon is caused because as time gap values
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Fig. 3. Comparison of acceleration energy and final posi-
tion accuracy resulted from different mean and stan-
dard deviation of the A20DM time gap parameter.

are mixed in traffic over various ranges, the impacts of the
different time gaps are blended.

Overall, the eco-driving controller with the V2V predictor
reduces acceleration energy more than the CS and CA pre-
dictors due to its improved prediction accuracy. Another
notable finding is that the V2V predictor produces reliable
performance regardless of the mean of time gaps when the
number of connected vehicles is 100.

4.2 Prediction Horizon Length

The acceleration energy from applying different prediction
horizon lengths to the controller is compared in Fig. 4a.
These results are produced with the homogeneous car-
following scenarios with pr = 0.5 s and o, = 0, where all
vehicles are connected, N¢, = 100. The results show that
the ego vehicle can reduce acceleration energy compared
to the target vehicle for all the predictor types. The
reason for this result is well visualized in Fig. 5. In the
figures, the speed and distance gap trajectories of the ego
vehicle using the V2V predictor are plotted with different
prediction horizon lengths. When the horizon length is 10
s, the ego vehicle closely follows the target vehicle with
less flexibility. When applying a longer prediction horizon,
the controller can produce better optimal solutions by
looking ahead further. Hence, applying a longer prediction
horizon results in a smoother speed trajectory overall. This
conclusion might not be consistent under limited V2V
connectivity, which will be further studied in our future
work.
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Fig. 5. Ego vehicle’s speed and distance gaps from the
target vehicle when using the V2V predictor with
different prediction horizon lengths.

4.8 Number of Connected Vehicles

The influence of the number of connected vehicles on
the performance of the V2V predictor is analyzed in this
section. In Fig. 6a, the RMSE of the target vehicle’s
final position estimates are plotted for varying numbers of
connected vehicles, where the prediction horizon length is
100 s, and the same time gap parameters with Fig. 4 are
used. The RMSE of the V2V predictor decreases as the
number of connected vehicles increases. Note that when
the number of the connected vehicles is limited to 8, the
RMSE of the V2V predictor is similar to the CS predictor
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Fig. 6. Comparison of prediction accuracy and acceleration
energy using different numbers of connected vehicles.

due to the strategy the V2V predictor adopts: When the
V2V information for interpolating the entire horizon is
limited, the CS prediction is employed, using the current
speed of the farthest connected preceding vehicle. The
impact of the number of connected vehicles on the V2V
predictor’s accuracy directly leads to acceleration energy,
as shown in Fig. 6a. The acceleration energy savings
significantly increases as the V2V predictor’s accuracy is
improved with the maximum V2V connectivity.

5. ENERGY CONSUMPTION EVALUATION
5.1 Simulation Setting

To validate the findings from our the parameter study in
realistic environment, we implement RoadRunner (Kim
et al. (2018)). RoadRunner is a multi-vehicle simulation
platform in which each vehicle has a high-fidelity power-
train model and reacts to the surrounding environment
(e.g., preceding vehicle, intersections). To avoid heavy
computational load, the ego and target vehicles’ driving
are only simulated in RoadRunner environment, while the
rest of the preceding vehicles are virtually existed. The
V2V messages transmitted from the preceding vehicles
are delivered to the ego vehicle in RoadRunner online.
The preceding vehicles’ trajectories are adopted from the
A20DM traffic generation conducted in the MATLAB
environment. In this analysis, homogeneous car-following
scenarios is considered where the most front vehicle drives
the UDDS cycle. The energy consumption of ego vehicles
is evaluated using a battery electric vehicle model provided
in RoadRunner. The total mass of the vehicle is 1784 kg.
The maximum power and torque of the vehicle are 123.9
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kW and 393.7 Nm, respectively. The wheel radius is 0.3
m, and the battery energy is 59.89 kWh. Finally, the gear
and the final drive ratios are 1.6 and 3.5, respectively.

5.2 Results and Discussion

The RoadRunner simulation results with various com-
binations of parameters are plotted in Fig. 7. Battery
energy consumption is reduced when a longer time gap
is applied in the traffic generation (Fig. 7a). This trend
coincides with the trend in the acceleration energy pre-
sented in Fig. 3a. In addition, the target vehicle’s battery
energy consumption decreases with the time gap due to
the smoothed speed profile, which weakens the benefit
of using V2V communication. Fig. 7b and Fig. 7c show
battery energy consumption depending on the prediction
horizon lengths and number of connected vehicles, respec-
tively. These further battery energy savings are correlated
to reduced acceleration energy, as shown in Fig. 4a and
Fig. 6b. The V2V predictor enables the ego vehicle to
decrease its battery energy consumption and reach the
minimum closer to the perfect predictor, as it elongates
its prediction horizon while guaranteeing higher accuracy
using richer V2V information. The 2% performance gap
between the perfect and V2V predictors still exists and
could be filled by future-intent sharing between connected
vehicles. Note that when the number of connected vehicles
is limited (N., = 4), the energy savings from using the
V2V predictor is similar to that of using the CS predictor.

6. CONCLUSION

This paper investigates the potential energy saving of a
V2V-enabled eco-driving control system. The eco-driving
controller optimizes driving speed based on the target ve-
hicle’s future driving behaviors, predicted by an LWPR al-
gorithm using connected vehicles’ states obtained via V2V
communication. The performance of the predictor and
controller is assessed by varying the mean and standard
deviation of time gap parameters, the number of connected
vehicles, and the prediction horizon length. Simulation
results show that vehicles consume less energy when traffic
maintains longer time gaps, while randomness in time gaps
weakens this trend. In addition, our system can achieve
near-benchmark energy efficiency with the prediction hori-
zon of 100s if a sufficient number of connected vehicles is
available. This study will be extended by analyzing the
cross impacts between parameters, for instance, finding the
effective length of prediction horizons under the different
combinations of time gaps and the number of connected
vehicles. Furthermore, the different levels of cooperative
driving automation will be implemented in large-scale
traffic simulations for performance comparison.
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