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Abstract: Eco-driving is a highly nonlinear control problem. The nonlinearities include the
complex energy conversion/dissipation in the powertrain, environmental influences such as road
grade and aerodynamic drag, constraints due to traffic signs, safety issues, and physical limits of
the vehicle system. In recent years, researchers have increasingly revisited the Koopman operator
to linearize nonlinear dynamics. This paper adopts such an approximation technique to construct
the lifted state space in a data-driven procedure that allows us to incorporate nonlinearities and
system perturbations in the cost function. In addition, the nonlinear constraints in states can
also be handled linearly. The resultant formulation of a linearly constrained quadratic program
can be readily applied to design a model predictive control that enjoys a low computation load as
with a linear dynamic system. Simulation results demonstrate additional energy saving potential
compared to a linear approach.

Keywords: Connected and automated vehicles, Nonlinear model reduction, Model predictive
control, Koopman operator, Legendre polynomial approximation

1. INTRODUCTION

In recent years, automation control society revisits Koop-
man operator theory (Koopman, 1931), to obtain lin-
earized formulations for system modeling and thereby de-
sign linear controls for their applications. The main idea
is to represent a nonlinear dynamical system with an
infinite-dimensional but linear operator on a Hilbert space
of measurement functions of the original system states. In
practice, an approximation of the operator acting on a
high- but finite-dimensional subspace, is usually applied
instead. In contrast to commonly adopted local lineariza-
tion near a fixed point, such as using Taylor series, Koop-
man approximation offers a global linear representation.
Recently, researchers have demonstrated that the approx-
imation can also be extended to a controlled context, which
makes it possible to design controls using linear control
theories (Korda and Mezić, 2018; Kaiser et al., 2021).

Another factor contributing to the renewed interest in
Koopman theory is that the procedure to obtain the linear
model can be fully data-driven and only requires a linear
least-squares fitting. Moreover, the computational com-
plexity of the linear control designed through Koopman

⋆ This report and the work described were sponsored by the U.S.
Department of Energy (DOE) Vehicle Technologies Office (VTO)
under the Systems and Modeling for Accelerated Research in Trans-
portation (SMART) Mobility Laboratory Consortium, an initiative
of the Energy Efficient Mobility Systems (EEMS) Program.

approximation depends on the number of control inputs
and thus is comparable to conventional linear control.

This paper concerns the eco-driving problem of connected
and automated vehicles, which is to minimize the energy
consumption in traveling a given route. As the authors
noted in Shen et al. (2021), the system dynamics, the
cost function and path constraints of eco-driving contain
various nonlinearities. Naturally, these nonlinearities can
be well accommodated with solution methods such as
dynamic programming (De Nunzio et al., 2013) and non-
linear programming (Xu et al., 2015; Shen et al., 2021).
Unfortunately, the combinatorial complexity involved in
evaluating the cost function (also known as the curse of
dimensionality) of dynamic programming and the iterative
corrections in solution convergence of nonlinear program-
ming render them cumbersome to implement in real-time.
By changing a coordinate system (e.g., integrating over
speed [Wan et al., 2016] or distance [Kalabis and Müller,
2012] in lieu of time), nonlinearities may be eliminated in
the selected state, but not in both states simultaneously.

In this paper, we introduce a data-driven procedure
for system identification based on Koopman theory to
construct the vehicle longitudinal motion in a high-
dimensional lifted state-space. Thus, the nonlinear influ-
ence of powertrain-dependent energy inefficiency, friction
losses, road grade, and speed limits on the cost func-
tion and inequality constraints can be embedded in that
lifted linearly evolving invariant subspace. In Section 3.2,
the highlight of the paper, the Koopman embedding
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allows us to adapt the polynomial factors in the cost
function and linear inequality conditions to the position-
dependent changes in road grade and speed limit. The
linear-quadratic formulation of the system and cost func-
tion can be further converted to a constrained quadratic
program (QP) that can be efficiently solved. In the end of
the paper, we evaluate the performance of the resultant
linear model predictive control (MPC) in RoadRunner, 1

and compare it with an established linear controller (Han
et al., 2020a).

2. DATA-DRIVEN KOOPMAN ANALYSIS

2.1 Koopman Operator

We start with the general form of a nonlinear controlled
system in discrete time:

xk+1 = f(xk,uk)

where k denotes an integer time step, k = 0, 1, . . . . x ∈ Rn

is the state of the system, u ∈ Rm the control input, and
f the nonlinear transition mapping.

Now we introduce the Koopman operator K : F 7→ F ,
which is a linear operator acting on nonlinear observable
functions ψ : F 7→ R belonging to a space of invariant
functions F . Originally, the Koopman operator was intro-
duced for uncontrolled dynamical systems and is infinite-
dimensional. Papers such as Proctor et al. (2018) show
that the Koopman operator can be generalized for con-
trolled systems to evolve over a state space augmented by
a control space,

(Kψ)(xk,uk) = ψ(f(xk,uk),uk+1).

2.2 Linear Lifted System and Quadratic Stage Cost

To design a time-domain control, we need to approximate
the Koopman operator K in a finite-dimensional subspace
RN , N ≫ n. To achieve the approximation, we applied
a data-driven method called extended dynamic mode
decomposition (Korda and Mezić, 2018) that performs
regression on a vector of observable functions ψ, which
produces the lifted state z ∈ RN ,

z = ψ(x) = [ψ1(x), . . . , ψN (x)]T. (1)

Note that here control u is not lifted. The extended
dynamic mode decomposition algorithm seeks to identify
the best-fit linear operators A ∈ RN×N , B ∈ RN×m and
C ∈ Rn×N in the lifted space,

zk+1 = Azk +Buk, x̂k = Czk, (2)

where x̂ is the predicted state. In addition to the linear
lifted system model (2), for the ultimate goal of designing
an MPC, the stage cost needs to be defined in a quadratic
form,

Lk = zTkQzk + uT
kRuk + zTkPuk + qTzk + rTuk + c

=
[
1 zTk uT

k

]  c 1
2q

T 1
2r

T

1
2q Q 1

2P
T

1
2r

1
2P R


︸ ︷︷ ︸

≜Ω

[
1
zk
uk

]
, (3)

1 RoadRunner is a multi-vehicle energy consumption and perfor-
mance simulation platform that emulates the interactions between
vehicles and road infrastructure (Kim et al., 2018).

where Q ∈ RN×N , R ∈ Rm×m, P ∈ RN×m, q ∈ RN ,
r ∈ Rm, and c ∈ R are weighting matrices. Q and R are
positive semi-definite. Ω is a symmetric matrix composed
of Q, R, P , q, r, and c, as shown. To prepare for linear
regression finding the quadratic-cost factors, we consider
a vector y built by column-major vectorizing [denoted by
vec(·)] the outer product of ζ and itself,

y = vec
(
ζζT

)
, ζ ≜

[
1 zT uT

]T
. (4)

Thus, quadratic form (3) is equivalent to

Lk =
(
vec(Ω)

)
Tyk. (5)

2.3 Data-Driven Learning Procedure

The first step is to collect the direct measurement data
(generated, in our case, by simulation) of the state, the
control input, and stage cost in the snapshot matrices:

X = [x1, . . . ,xK ], X+ = [x2, . . . ,xK+1],

U = [u1, . . . ,uK ], L = [L1, . . . , LK ],

where X ∈ Rn×K and X+ ∈ Rn×K refer to the current
and the successor states, respectively, resulting from the
control inputs U ∈ Rm×K . L ∈ R1×K collects the stage
costs. K columns correspond to K time steps. Then we
construct the lifted state matrices by evaluating (1),

Z = [ψ(x1), . . . ,ψ(xK)], Z+ = [ψ(x2), . . . ,ψ(xK+1)],

and a snapshot matrix collecting y applying (4) at K time
steps,

Y = [y1, . . . ,yK ].

The last step is to perform the least-squares minimization,

min
A,B

∥∥Z+ −AZ−BU
∥∥
F
, min

C
∥X− CZ∥F , (6a)

min
Ω

∥∥L−
(
vec(Ω)

)
TY

∥∥
F

(6b)

with ∥ · ∥F being the Frobenius norm of a matrix. In this
way, the linear operators A, B, and C are obtained as the
solutions to (6a),

[A, B] = Z+[Z,U]†, C = XZ†, (7a)

and the quadratic operator Ω as solution to (6b),

Ω = vec−1
(
LY†). (7b)

Here, vec−1(·) inverses the vectorization and yields the
square matrix Ω as in (3).

3. APPLYING DATA-DRIVEN LEARNING TO
ECO-DRIVING

The eco-driving problem discussed in this paper concerns
a single vehicle and is to minimize energy consumption J
for the travel duration t ∈ [t0, tf ]:

min
a

J =

∫ tf

t0

Pcons(a, v, s) dt (8a)

subject to v̇ = a, ṡ = v, (8b)

h(v, s, a, t) ≤ 0, (8c)

v(t0) = v0, s(t0) = s0, s(tf) = sf . (8d)

The minimization of J is subject to the longitudinal
kinematics (8b), the inequality conditions (8c), 2 and the

2 Ref. Shen et al. (2021), eq. (6) for details of the nonlinearities in
the constraints.
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boundary value conditions of initial speed/position v0, s0
and terminal position sf (8d). The state of dimension n = 2
is composed of the vehicle speed v and position s, and the
single-element control input of dimension m = 1 is the
vehicle acceleration a. To ease the following data analysis,
it is necessary to normalize the state and control, and thus
we define,

x ≜ [ṽ, s̃]T = [v/vmax, s/smax]
T, u ≜ a/an, (9)

where the maximum speed vmax = 40m/s, the maximum
preview distance smax = 800m, and the acceleration
normalization an = 2m/s2.

To perform the lifting in (1), we choose an observable
vector ψ that contains the monomials and their products
of ṽ and s̃, up to the third order, Np = 3: 3

ψ
(
[v, s]T

)
=

[
ṽ, s̃, ṽ2, ṽs̃, s̃2, ṽ3, ṽ2s̃, ṽs̃2, s̃3

]T
, (10)

which renders N = 9.

The energetic stage cost considered in eco-driving com-
prises the energy consumed over the descretized time
∆t = 0.1 s for propelling the vehicle:

Lk =

∫ tk+1

tk

Pcons(v, Fwhl) dt ≈ ∆tPcons(vk, Fwhl,k).

The power consumption Pcons

(
v, Fwhl(a, v, s)

)
is in general

a nonlinear function of speed v and wheel force Fwhl

(Sciarretta et al., 2015):

Fwhl(a, v, s) =
(
a+ g sinα(s)

)
mveh + Fres(v), (11)

where gravity acceleration is denoted by g, road grade
by α, and vehicle mass by mveh. The resistance force
Fres sums up v-nonlinearities such as rolling friction and
aerodynamic drag. Given that Pcons is close to a quadratic
form and Fres is often considered quadratic in v, the basis
y formed by applying (4) to the chosen observables (10)
should be sufficient to accommodate high-order modes of
the stage cost Lk.

3.1 Collecting Data

In total, we built 90 routes, each 10 km long, in RoadRunner
and split them at an 8:2 ratio into a training and a
validation set. Meanwhile, we prepared a set of common
speed limit values {vlim} and a uniformly spaced series
of segmenting positions {sseg}. On each route, we sampled
uniformly nvlim points from {vlim} and {sseg} to define the
speed limit profile, and nstp points from {sseg} to insert
stop signs. In the training phase, road grades are set to
zero.

An electric vehicle controlled by a human driver model
(Han et al., 2020b) was simulated without surrounding
traffic in RoadRunner. The measurement of x, u, and L
was sampled at ∆t = 0.1 s, and collected in trajectories.
These trajectories were then partitioned to the maximum
preview distance smax in line with the normalization (9).
Inputting the collected X, X+, U, and L to the data-
driven training (7) in Section 2.3 led to (A,B,C) for the
system, and Ω for the energetic stage cost—the composite
matrix of (Q,R, P, q, r, c).

3 As noted in Williams et al. (2015), a wide range for choice of
observables ψ is available.

3.2 Embedding Position-Dependent Variables

Readers may have noticed the original vehicle kinematics
are already linear and do not require a “linearization.”
In fact, unlike choosing an effort quantity such as motor
torque in Shen et al. (2021), choosing acceleration as
control input eliminates all state-dependent nonlinearities
from the system (e.g., terrain variation and aerodynamics);
consequently, high-order nonlinear modes are passed on
to the cost formulation, as in (11). While the nonlinear
modes with reference to ṽ like Fres(v) are invariant, the s̃-
dependent mode sinα(s) varies with the terrain condition;
thus, while the former have been embedded into the
observable coordinates ψ during the data-driven learning,
the latter is absent.

We introduce shifted Legendre polynomials up to Np-th
order:

𭟋𭟋𭟋(s̃) = [𭟋0(s̃), . . . ,𭟋Np(s̃)]
T = D𭟋ξs = D𭟋Sξζζ

with ξs = [1, s̃, . . . , s̃Np ]T, the lower-triangular matrix

D𭟋 = [dij ]
Np

i,j=0, dij =


0, i < j

(−1)i+j

(
i

j

)(
i+ j

j

)
, i ≥ j

and the indexing matrix

Sξζ = [sξζ,ij ]
Np,(1+N+m)
i,j=0 , sξζ,ij =

{
1, j = (i+1)i

2

0, otherwise
;

an arbitrary function ω(s̃) in the Lebesgue function space
L2([0, 1]) can be approximated in 𭟋𭟋𭟋(s̃) (Quarteroni et al.,
2007, Sect. 10.1.2), resulting in a polynomial ps(s̃),

ps(s̃) =

Np∑
i=0

g̃i𭟋i(s̃), g̃i = (2i+ 1)

∫ 1

0

ω(s̃)𭟋i(s̃) ds̃. (13a)

Further, ps(s̃) can be rewritten in linear algebra,

ps(s̃) = g̃T𭟋𭟋𭟋(s̃) = g̃TD𭟋ξs = g̃TD𭟋Sξζζ. (13b)

In the special case that ω is piecewise constant in s̃ ∈ [0, 1],

g̃ ≜ [g̃0, . . . , g̃Np
]T in (13) is trivial to calculate,

g̃i = (2i+ 1)

Npwc−1∑
j=0

ω̄j

(
𭟋(−1)
i (s̃j+1)−𭟋(−1)

i (s̃j)
)
,

ω(s̃) = ω̄j , for s̃ ∈ [s̃j , s̃j+1) ∈ [0, 1],

(14)

where Npwc is the number of piecewise steps of ω(s̃), and

𭟋(−1)
i is the antiderivative of 𭟋i.

Road Grade The nonlinear g sinα(s̃k) is embedded in the
stage cost Lk online adaptively. 4 Notice it is an increment
to a in (11), so we can replace uk with uk +

g
an

sinα(s̃k) in

(3) and the stage cost with the quadratic matrix Ω learned
in Section 3.1 becomes

Lk =
(
ζk + σu

g sinα(s̃k)
an

)
T Ω

(
ζk + σu

g sinα(s̃k)
an

)
, (15a)

σu = [01×N , 1]
T. (15b)

The Legendre approximation in (13) and (14) for the
piecewise constant grade yields ps,g(s̃) ≈ g

an
sinα(s̃), as

Fig. 1 displays with an example grade profile. Once we
apply the approximation ps,g(s̃) to (15), we obtain:

4 Note that s̃k is linear to u but α is nonlinear in s̃.
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Fig. 1. Fitting road-grade-induced acceleration with Leg-
endre polynomials.

Lk ≈ ζT
(
Ω+ Ω̂

)
ζ, (16a)

with Ω̂ = Θg
TΩΘg +ΩΘg +Θg

TΩ (16b)

and Θg = σu g̃
T
gD𭟋Sξζ, (16c)

where g̃g instantiates (14) for the road grade approxima-
tion. We see from (16) that the variance in the road grade
within a preview horizon is interpreted into a weighting

increment Ω̂ on the high-order coordinates ζ.

Speed Limit The speed limit also varies in the form of a
shifted step function depending on position, like the road
grade. By applying (13) again, we obtain the Legendre
polynomial approximation of the varying speed limit:

ṽ ≤ ps,vlim(s̃) = g̃vlim
TD𭟋Sξζζ, (17)

with g̃vlim resulting from inputting the piecewise speed
limit profile to (14). Because ṽ is within the span ζ, the
approximated speed limit conforms to a linear inequality
expression,[

č Ǎ B̌
]
ζ =

[
č Ǎ B̌

] [
1 zT uT

]T ≤ 0,

with matrix Ǎ and B̌ and vector č forming the linear
factor.

Remark 1. The adaptive embedding of road grade and
speed limit integrates well into the MPC framework; it
requires essentially only re-evaluating g̃g and g̃vlim based
on the updated profiles of road grade and speed limit,
respectively, which are perceived on the receding horizon
of MPC.

3.3 Validation

The learned linear system (2) and quadratic cost (16) was
validated on the 18 routes we set aside in Section 3.1. Road
grades with their lengths were injected to the routes ac-
cording to the extracted joint distribution from a collection
of real-world routes. 5 The validation was performed in a
receding horizon of 20 s that will be the same length used
in the MPC to be designed. Taking one route for example,
Fig. 2 displays the trajectories of speed and distance, road
grade acceleration, and stage cost predicted using (2), (13),
and (16), respectively; the prediction results (solid red)
are compared to the ground truth data (dashed blue),
simulated using RoadRunner. Fig. 3 presents the overall
statistics on the prediction error. Data points of prediction
and truth are displayed in the scatter plots on the left,
while the right plots show the error distributions of the
observed variables.

5 The statistics of road grade and length can be described by
a bivaraite gamma distribution, whose parameters are found by
maximum likelihood estimation.

Fig. 2. Prediction results compared to truth on one route.

As discussed in Section 3.2, the original states transition
is by nature linear, which explains the high correlation
between the prediction and the truth ( see the first two
rows of Fig. 3). In contrast, in our formulation, the stage
cost is intended to contain the most nonlinearities, not
only in ṽ but also in s̃ over the adaptive approximation
in Section 3.2.1. The last row in Fig. 3 reflects the
distribution of road-grade approximation errors despite
the higher-order monomial powers. Those errors then
contributed to the deviation of stage costs prediction, as
shown in the third row of Fig. 3. Still, we consider the
prediction accuracy of the stage cost satisfactory given
that the prediction’s root mean square error (RMSE) is
close to half of the data variance ≈ 1.35 kJ, and the
prediction is well aligned with the truth in an average
sense, as observed in the last row of Fig. 2.

Fig. 3. Statistics of prediction results over the test set.

4. MODEL PREDICTIVE CONTROL DESIGN

Except for the lifted state coordinates, the Koopman MPC
(KMPC) follows the same design procedure as with a
classical MPC.
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An MPC solves iteratively an optimal control problem
(OCP) on a receding horizon and applies the first element
in the optimized control sequence. In each iteration, the
OCP is initialized with the current state measurement
and needs to renew the constraint conditions. QP, as a
simple case of OCP, aims to minimize the sum of quadratic
stage costs (Lk)

Nh−1
k=0 at the discretized steps within the

horizonNh, subject to the linear transition as in (2), linear
inequality and initial boundary point conditions:

min
uk,zk

J =

Nh−1∑
k=0

[
1, zk

T,uk
T
]
Ω

[
1, zk

T,uk
T
]T︸ ︷︷ ︸

ζk

(18a)

subject to zk+1 = Azk +Buk, (18b)

Ǎkzk + B̌kuk + čk ≤ 0, (18c)

z0 = ψ(x0), (18d)

where matrix Ǎk ∈ Rnie,k×N , B̌k ∈ Rnie,k×m and vector
čk ∈ Rnie,k , with nie,k being the rows of linear inequality
condition at k-th time step. Thanks to the Koopman em-
bedding (10), the inequality conditions (18c) can represent
speed limits (17) and torque limits which are otherwise
nonlinear in the original state/control space.

By evaluating the recursive stage transition condition
(18b) as in Appendix A, the sparse-form QP (18) is
reduced to the dense form to optimize the input sequence
U = [u0

T,u1
T, . . . , uNh−1

T]T:

min
U

J̄ = UTHU + GTU

subject to ǍUU ≤ B̌U,
(19)

to which the parameters areH, G, ǍU, and B̌U and are re-
computed (see Appendix A) at each close-loop execution
of the MPC due to updating z0, reassessing road grade

cost weight Ω̂, and adapting the speed limit constraint. 6

The constrained QP (19) can be efficiently solved by an off-
the-shelf toolbox such as qpOASES (Ferreau et al., 2014).

5. SIMULATION RESULTS IN ROADRUNNER

The KMPC designed in Section 4 was implemented as a
closed-loop control for the vehicle selected for training in
Section 3.1. The vehicle ran in RoadRunner on two real-
world routes extracted from HERE maps: one composed
mainly of highway sections (see Fig. 4), and the second
from an urban area (see Fig. 5). For evaluation, KMPC
is compared with two other controls: a human driver
model (Han et al., 2020b) (“Human”) and a successful
optimal eco-driving control (“Spd-only”) derived based on
linearized kinetics that neglect nonlinear factors (e.g., road
grade and aerodynamics) (Han et al., 2020a).

The travel time, energy consumption, and the relative
benefits (against “Human”) of the controls are shown in
Table 1. Generally, KMPC achieves higher efficiency than
Spd-only representing linear approaches at a low cost of
potential increase of travel time. Apparently, including
nonlinear features contributed to the higher saving poten-
tial while complying with all the constraints.

6 Constraints such as speed-dependent torque limit, traffic light, and
stop signs are also integrated in the KMPC. This paper does not
discuss them in details because of the page limit.

Fig. 4. RoadRunner simulation results on a highway route.

Fig. 5. RoadRunner simulation results on a urban route.

Table 1. Result comparison between controls.

Route Control Travel Time [s] Energy [kWh]

Human 847.2 (–) 5.327 (–)
highway Spd-only 826.9 (−2.40%) 5.301 (−0.49%)

KMPC 855.3 (+0.96%) 5.034 (−5.50%)

Human 522.7 (–) 0.5418 (–)
urban Spd-only 525.8 (+0.59%) 0.5125 (−5.41%)

KMPC 521.3 (−0.27%) 0.4913 (−9.32%)

6. CONCLUSION

This paper presents a general data-driven process based
on Koopman analysis to build a linear-quadratic system-
cost formulation in a lifted higher-dimension to design a
KMPC for eco-driving control. Specifically, higher-order
monomial powers of the original states are chosen as the
Koopman embedding coordinates so that they can be
utilized to approximate the varying road grade and speed
limit using shifted Legendre polynomials. Hence, the road
grade influence is converted to a weighting increment of the
quadratic cost; the speed limit becomes linear inequality in
the Koopman embedding. The approximation of these two
position-dependent nonlinearities is renewed in adaptively
along the preceding horizon in the KMPC. The KMPC
was then validated in RoadRunner as a feedback control
and demonstrated the efficacy considering nonlinearities
compared to a linear approach.
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Appendix A. DENSE-FORM QP

Evaluating the recursive discrete system (18b) gives us the
state sequence on the horizon Z = [z0

T, z1
T, . . . ,zNh−1

T]T

as a linear combination of the initial state z0 and the
control sequence U = [u0

T,u1
T, . . . , uNh−1

T]T involving
batch matrices Sz and Su:

Z =


I
A
A2

...
ANh−1


︸ ︷︷ ︸

Sz

z0 +


0 0 · · · 0 0
B 0 · · · 0 0

AB B
. . .

...
...

...
. . .

. . . 0 0
ANh−2B · · · AB B 0


︸ ︷︷ ︸

Su

U. (A.1)

Using (A.1), the cost function J in (18) is rewritten as

J = ZTQ̄Z + UTR̄U + ZTP̄U + q̄TZ + r̄TU +Nhc,

where block-diagonal matrices {Q̄, R̄, P̄} = diag({Q,R,
P}, . . . , {Q,R, P}), and stacked vectors {q̄, r̄} =

[
{qT,

rT}, . . . , {qT, rT}
]T
. Dropping the term independent of U

using (A.1) leads to J̄ ,

J̄ = J − z0
TSz

TQ̄Szz0 −Nhc = UTHU + GU

with H ≜ Su
TQ̄Su + R̄+ Su

TP̄,

G ≜ z0
T
(
2Sz

TQ̄Su + Sz
TP̄

)
+ q̄T + r̄TSu.

(A.2)

The sparse expression of constraints (18c) for steps k =
0, . . . , Nh can be written in a single block-matrix form,

ǍZ + B̌U + č ≤ 0,

with {Ǎ, B̌} ≜ diag
(
{Ǎ0, B̌0}, . . . , {ǍNh−1, B̌Nh−1}

)
and

č ≜
[
č0

T, č1
T, . . . , čNh−1

T
]T
. Further, by substituting Z with

(A.1), inequality condition becomes dependent on z0 and
U : (

ǍSu + B̌
)︸ ︷︷ ︸

≜ǍU

U ≤ −ǍSzz0 − č︸ ︷︷ ︸
≜B̌U

.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

122


